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O U T L I N E

    INTRODUCTION TO 
PROSPECT THEORY 

   Whether we like it or not, we face risk every day 
of our lives. From selecting a route home from work 
to selecting a mate, we rarely know in advance and 
with certainty what the outcome of our decisions will 
be. Thus, we are forced to make tradeoffs between the 
attractiveness (or unattractiveness) of potential out-
comes and their likelihood of occurrence. 

   The lay conception of  “ risk ”  is associated with 
hazards that fill one with dread or are poorly under-
stood ( Slovic, 1987 ). Managers tend to see risk not as 
a gamble but as a “ challenge to be overcome, ”  and 

see risk as increasing with the magnitude of potential 
losses (e.g., March and Shapira, 1987 ). Decision theo-
rists, in contrast, view risk as increasing with variance 
in the probability distribution of possible outcomes, 
regardless of whether a potential loss is involved. For 
example, a prospect that offers a 50–50 chance of pay-
ing $100 or nothing is more risky than a prospect that 
offers $50 for sure – even though the  “ risky ”  prospect 
entails no possibility of losing money. 

   Since  Knight (1921) , economists have distinguished 
decisions under risk  from decisions under  uncertainty . 
In decisions under risk, the decision maker knows 
with precision the probability distribution of pos-
sible outcomes, as when betting on the flip of a coin 
or entering a lottery with a known number of tickets. 

  11  11 
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In decisions under uncertainty, the decision maker is 
not provided such information but must assess the 
probabilities of potential outcomes with some degree 
of vagueness, as when betting on a victory by the 
home team or investing in the stock market. 

   In this chapter, we explore behavioral and neuro-
economic perspectives on decisions under risk. For 
simplicity we will confine most of our attention to 
how people evaluate simple prospects with a single 
non-zero outcome that occurs with known probability 
(e.g., a 50–50 chance of winning $100 or nothing), 
though we will also mention extensions to multiple 
outcomes and to vague or unknown probabilities. 

   In the remainder of this section we provide a brief 
overview of economic models of decision making 
under risk, culminating in prospect theory ( Kahneman
and Tversky, 1979 ;  Tversky and Kahneman, 1992 ), the 
most influential descriptive account that has emerged 
to date. In subsequent sections, we provide an over-
view of various parameterizations of prospect theory’s 
functions, and review methods for eliciting them. We 
then take stock of the early neuroeconomic studies 
of prospect theory, before providing some suggested 
directions for future research. 

    Historical Context 
   The origin of decision theory is traditionally traced 

to a correspondence between Pascal and Fermat in 
1654 that laid the mathematical foundation of prob-
ability theory. Theorists asserted that decision makers 
ought to choose the option that offers the highest 
expected value (EV). Consider a prospect ( x ,  p ) that 
offers $ x  with probability  p  (and nothing otherwise): 

EV .! px (11.1)

  A decision maker is said to be  “ risk neutral ”  if he is 
indifferent between a gamble and its expected value; 
he is said to be “ risk averse ”  if he prefers a sure pay-
ment to a risky prospect of equal or higher expected 
value; he is said to be “ risk seeking ”  if he prefers a 
risky prospect to a sure payment of equal or higher 
expected value. Thus, expected value maximization 
assumes a neutral attitude toward risk. For instance, 
a decision maker who employs this rule will prefer 
receiving $100 if a fair coin lands heads (and noth-
ing otherwise) to a sure payment of $49, because the 
expected value of the gamble ($50      !      .5      "      $100) is 
higher than the value of the sure thing ($49). 

   Expected value maximization is problematic 
because it does not allow decision makers to exhibit 
risk aversion – it cannot explain, for example, why a 
person would prefer a sure $49 over a 50–50 chance 

of receiving $100 or nothing, or why anyone would 
purchase insurance. Swiss mathematician Daniel 
Bernoulli (1738) advanced a solution to this problem 
when he asserted that people do not evaluate options 
by their objective value but rather by their utility or 
 “ moral value. ”  Bernoulli observed that a particular 
amount of money (say, $1000) is valued more when 
a person is poor (wealth level W1) than when he is 
wealthy ( W2) and therefore marginal utility decreases 
(from  U1 to U2) as wealth increases (see  Figure 11.1a   ). 
This gives rise to a utility function that is concave over 
states of wealth. In Bernoulli’s model, decision makers 
choose the option with highest expected utility (EU): 

EU pu x! ( ) (11.2)

   where  u ( x ) represents the utility of obtaining 
outcome x . For example, a concave utility function 
(u# ( x )      $      0) implies that the utility gained by receiving 
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FIGURE 11.1      (a) A representative utility function over states of 
wealth illustrating the notion of diminishing marginal utility. (b) A 
representative utility function over states of wealth illustrating risk 
aversion for gains at an initial state of wealth W0.       
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$50 is more than half the utility gained by receiving 
$100, and therefore a decision maker with such a utility 
function should prefer $50 for sure to a .5 probability 
of receiving $100 (see  Figure 11.1b ) 

    Axiomatization of Expected Utility 

  Expected utility became a central component of eco-
nomic theory when von Neumann and Morgenstern 
(1947)  articulated a set of axioms that are both necessary 
and sufficient for representing a decision-maker’s choices 
by the maximization of expected utility (see also Jensen, 
1967 ). Consider chance lotteries  L1  and  L2  that are known 
probability distributions over outcomes. For instance, 
L1  might offer a .5 chance of $100 and a .5 chance of 0; 
L2  might offer $30 for sure. Consider also a binary prefer-
ence relation  !  over the set of all possible lotteries  L ; thus 
L1! L2  is interpreted as  “L1  is preferred or equivalent to 
L2 . ”  Now consider the following axioms: 

    1      Completeness : People have preferences over all 
lotteries. Formally, for any two lotteries  L1  and  L2
in L , either  L1 ! L2 ,  L2 ! L1 , or both. 

    2      Transitivity : People rank lotteries in a consistent 
manner. Formally, for any three lotteries  L1 ,  L2 , and 
L3 , if  L1 ! L2 , and  L2 ! L3 , then  L1 ! L3 .

    3      Continuity : For any three lotteries, some mixture 
of the best and worst lotteries is preferred to the 
intermediate lottery and vice versa . Formally, 
for any three lotteries  L1! L2   ! L3  there exist  α , 
β   ∈  (0,1) such that  αL1       %      (1      &       α )  L3! L2 , and 
L2 ! βL1       %      (1      &       β )  L3 .

    4      Substitution  (a.k.a.  “ independence ” ): If a person 
prefers one lottery to another, then this preference 
should not be affected by a mixture of both 
lotteries with a common third lottery. Formally, for 
any L1 ,  L2 , and  L3 , and any  α   ∈  (0, 1),  L1 ! L2  if and 
only if α   L1       %      (1      &       α )  L3 ! α   L2       %      (1      &       α )  L3 .    

   Von Neumann and Morgenstern proved that these 
axioms are both necessary and sufficient to represent 
a decision-maker’s decisions by the maximization of 
expected utility. That is, 

L L p u x p u xi i j j
j

m

i

n

1 2
1 1 2 2

11
!  if and only if ( ) ( ),'

!!
∑∑

 where superscripts indicate corresponding lottery 
numbers.

The completeness and transitivity axioms establish 
that decision makers can (weakly) order their prefer-
ences, which is necessary for using a unidimensional 
scale. The continuity axiom is necessary to establish 
a continuous tradeoff between probability and out-
comes. The substitution axiom is necessary to establish 

that utilities of outcomes are weighted by their respec-
tive probabilities. 

A more general formulation of expected utility the-
ory that extended the model from risk to uncertainty 
( Savage, 1954 ) relies on a related axiom known as the 
sure-thing principle : If two options yield the same conse-
quence when a particular event occurs, then a person’s 
preferences among those options should not depend 
on the particular consequence (i.e., the “ sure thing ” ) or 
the particular event that they have in common. To illus-
trate, consider a game show in which a coin is flipped 
to determine where a person will be sent on vacation. 
Suppose the contestant would rather to go to Atlanta 
if the coin lands heads and Chicago if it lands tails ( a , 
H ;  c ,  T ) than go to Boston if the coin lands heads and 
Chicago if it lands tails ( b ,  H ;  c ,  T ). If this is the case, 
he should also prefer to go to Atlanta if the coin lands 
heads and Detroit (or any other city for that matter) 
if the coin lands tails ( a ,  H ;  d ,  T ), to Boston if it lands 
heads and Detroit if it lands tails ( b ,  H ;  d ,  T ). 

   Violations of Substitution and the Sure thing 
Principle

   It was not long before the descriptive validity of 
expected utility theory and its axioms were called 
into question. One of the most powerful challenge 
has come to be known as the “ Allais paradox ”  ( Allais, 
1953 ;  Allais and Hagen, 1979 ). The following version 
was presented by  Kahneman and Tversky (1979)1 . 

Decision 1:  Choose between (A) an 80% chance of 
$4000; (B) $3000 for sure.  

Decision 2:  Choose between (C) a 20% chance of 
$4000; (D) a 25% chance of $3000. 

   Most respondents chose (B) over (A) in the first 
decision and (C) over (D) in the second decision, 
which violates the substitution axiom. To see why, 
note that C       !      1/4  A  and  D       !      1/4  B  (with a 3/4 chance 
of receiving 0 in both cases) so that according to the 
substitution axiom a decision maker should prefer  C
over D  if and only if he prefers  A  to  B . This systematic 
violation of substitution is known as the “ common 
ratio effect. ”  

  A related demonstration from Allais was adapted 
by  Kahneman and Tversky (1979)  as follows: 

Decision 3:  Choose between (E) a 33% chance of 
$2500, a 66% chance of $2400, and a 1% chance of 
nothing; (F) $2400 for sure.  

Decision 4:  Choose between (G) a 33% chance of 
$2500; (H) a 34% chance of $2400. 

INTRODUCTION TO PROSPECT THEORY

1 Kahneman & Tversky’s version was originally denominated in 
Israeli Pounds.
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   In this case most people prefer option (F) to option 
(E) in Decision 3, but they prefer option (G) to option 
(H) in Decision 4, which violates the sure-thing prin-
ciple. To see why, consider options (E) through (H) as 
being payment schemes attached to different lottery 
tickets that are numbered consecutively from 1 to 100 
(see  Table 11.1   ). Note that one can transform options 
(E) and (F) into options (G) and (H), respectively, 
merely by replacing the common consequence (receive 
$2400 if the ticket drawn is 35–100) with a new com-
mon consequence (receive $0 if the ticket drawn is 
35–100). Thus, according to the sure-thing principle, 
a person should favor option (G) over option (H) if 
and only if he prefers option (E) to option (F), and the 
dominant pattern of preferences violates this axiom. 
This violation of the sure-thing principle is known as 
the “ common consequence effect. ”  

   Both the common ratio effect and common conse-
quence effect resonate with the notion that people 
are more sensitive to differences in probability near 
impossibility and certainty than in the intermediate 
range of the probability scale. Thus, people typically 
explain their choice in Decision (1) as a preference 
for certainty over a slightly smaller prize that entails 
a possibility of receiving nothing; meanwhile, they 
explain their choice in Decision (2) as a preference for 
a higher possible prize given that the between a dif-
ference in probability of .20 and .25 is not very large. 
Likewise, people explain their choice in Decision (3) as 
a preference for certainty over a possibility of receiv-
ing nothing; meanwhile, they explain their choice in 
Decision (2) as a preference for a higher possible prize 
given that the difference between a probability of .33 
and .34 seems trivial.  

    The Fourfold Pattern of Risk Attitudes 

   The Allais paradox is arguably the starkest and 
most celebrated violation of expected utility theory. 
In the years since it was articulated, numerous studies 
of decision under risk have shown that people often 

violate the principle of risk aversion that under-
lies much economic analysis. Table 11.2    illustrates 
a common pattern of risk aversion and risk seeking 
exhibited by participants in studies of  Tversky and 
Kahneman (1992) . Let  C ( x ,  p ) be the  certainty equivalent
of the prospect ( x ,  p ) that offers to pay $ x  with prob-
ability p  (i.e., the sure payment that is deemed equally 
attractive to the risky prospect). The upper left-hand 
entry in  Table 11.2  shows that the median participant 
was indifferent between receiving $14 for sure and a 
5% chance of gaining $100. Because the expected value 
of the prospect is only $5, this observation reflects risk 
seeking behavior. 

    Table 11.2a  reveals a fourfold pattern of risk 
attitudes: risk seeking for low-probability gains 
and high-probability losses, coupled with risk aver-
sion for high-probability gains and low-probability 
losses. Choices consistent with this fourfold pattern 
have been observed in several studies ( Fishburn and 
Kochenberger, 1979 ;  Kahneman and Tversky, 1979 ;
 Hershey and Schoemaker, 1980 ;  Payne  et al ., 1981 ). 
Risk seeking for low-probability gains may contribute 
to the attraction of gambling, whereas risk aversion 
for low-probability losses may contribute to the attrac-
tion of insurance. Risk aversion for high-probability 
gains may contribute to the preference for certainty, as 
in the  Allais (1953)  problem, whereas risk seeking for 
high-probability losses is consistent with the common 
tendency to undertake risk to avoid facing a sure loss. 

TABLE 11.1          The Allais common consequence effect 
represented using a lottery with numbered tickets  

   Ticket numbers 

   Option  1–33  34  35–100 

   E  2500     0  2400 

   F  2400  2400  2400 

   G  2500     0     0 

   H  2400  2400     0 

 TABLE 11.2          The fourfold pattern of risk attitudes (a); 
risk aversion for mixed (gain–loss) gambles (b) (both 

adapted from  Tversky and Kahneman, 1992 )

(a) C(x, p) is the median certainty equivalent of the prospect that 
pays $x with probability p

 Gains  Losses 

   Low probability  C ($100, .05)      !      $14 
Risk seeking

 C ( & $100, .05)      !       &      $8 
Risk aversion

   High probability  C ($100, .95)      !      $78 
Risk aversion

 C ( & $100, .95)      !       &      $84 
Risk-seeking

   (b) Median gain amounts for which participants found 50–50 mixed 
gambles equally attractive to receiving nothing, listed fixed by loss 
amount

   Gain  Loss  Ratio 

    61   25  2.44 

   101   50  2.02 

   202  100  2.02 

   280  150  1.87 
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    Prospect Theory 
   The Allais paradox and the fourfold pattern of 

risk attitudes are accommodated neatly by prospect 
theory ( Kahneman and Tversky, 1979 ;  Tversky and 
Kahneman, 1992 ), the leading behavioral model of 
decision making under risk, and the major work for 
which psychologist Daniel Kahneman was awarded 
the 2002 Nobel Prize in economics. 

  According to prospect theory, the value  V  of a sim-
ple prospect that pays $ x  with probability  p  (and noth-
ing otherwise) is given by: 

V x, p w p v x( ) ( ) ( )!  (11.3)

   where  v  measures the subjective value of the conse-
quence x , and  w  measures the impact of probability  p
on the attractiveness of the prospect (see  Figure 11.2   ). 

   Value Function 

   Prospect theory replaces the utility function  u ( · ) 
over states of wealth with a value function v ( · ) over 
gains and losses relative to a reference point, with 
v (0)      !      0. According to prospect theory, the value 
function v ( · ) exhibits the psychophysics of dimin-
ishing sensitivity. That is, the marginal impact of a 
change in value diminishes with the distance from a 
relevant reference point. For monetary outcomes, the 
status quo  generally serves as the reference point dis-
tinguishing losses from gains, so that the function is 
concave for gains and convex for losses (see Figure 
11.2a ). Concavity for gains contributes to risk aver-
sion for gains, as with the standard utility function 
( Figure 11.1 ). Convexity for losses, on the other hand, 

contributes to risk seeking for losses. For instance, the 
disvalue of losing $50 is more than half the disvalue 
of losing $100, which will contribute to a preference 
for the gamble over the sure loss. This tendency to be 
risk averse for moderate-probability gains and risk 
seeking for moderate-probability losses may contrib-
ute to the “ disposition effect, ”  in which investors have 
a greater tendency to sell stocks in their portfolios that 
have risen rather than fallen since purchase ( Odean,
1998 ; but see also  Barberis and Xiong, 2006 ).

   The prospect theory value function is steeper for 
losses than gains – a property known as  loss aversion . 
People typically require more compensation to give 
up a possession than they would have been willing 
to pay to obtain it in the first place (see, for example, 
 Kahneman  et al ., 1990 ). In the context of decision 
under risk, loss aversion gives rise to risk aversion for 
mixed (gain–loss) gambles so that, for example, people 
typically reject a gamble that offers a .5 chance of gain-
ing $100 and a .5 chance of losing $100, and require at 
least twice as much “ upside ”  as  “ downside ”  to accept 
such gambles (see Table 11.2b ). In fact,  Rabin (2000) 
showed that a concave utility function over states of 
wealth cannot explain the normal range of risk aver-
sion for mixed gambles, because this implies that a 
decision maker who is mildly risk averse for small-
stakes gambles over a range of states of wealth must 
be unreasonably risk averse for large-stakes gambles. 
This tendency to be risk averse for mixed prospects 
has been used by Benartzi and Thaler (1995)  to explain 
why investors require a large premium to invest in 
stocks rather than bonds (the “ equity premium puz-
zle ” ): because of the higher volatility of stocks than 
bonds, investors who frequently check their returns 
are more likely to experience a loss in nominal value 
of their portfolios if they are invested in stocks than 
bonds (see also Barberis et al ., 2001 ).

It is important to note that loss aversion, which 
gives rise to risk aversion for mixed (gain–loss) pros-
pects (e.g., most people reject a 50–50 chance to gain 
$100 or lose $100) should be distinguished from con-
vexity of the value function for losses, which gives 
rise to risk-seeking for pure loss prospects (e.g., most 
people prefer a 50–50 chance to lose $100 or nothing, 
to losing $50 for sure).  

   Weighting Function 

   In prospect theory, the value of an outcome is 
weighted not by its probability but instead by a decision 
weight, w ( · ), that represents the impact of the rele-
vant probability on the valuation of the prospect (see 
equation 11.3). Decision weights are normalized so 
that w (0)      !      0 and  w (1)      !      1. Note that  w  need not be 

Losses

(a)

Gains

v

FIGURE 11.2  Representative value and weighting functions 
from prospect theory. (a) A hypothetical prospect theory value 
function illustrating concavity for gains, convexity for losses, and 
a steeper loss than gain limb. (b) A hypothetical prospect theory 
weighting function illustrating its characteristics inverse-S shape, the 
tendency to overweight low probabilities and underweight moder-
ate to large probabilities, and the tendency for weights of comple-
mentary probabilities to sum to less than 1. 

(b)

1

0 1

w

p
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interpreted as a measure of subjective belief – a person 
may believe that the probability of a fair coin landing 
heads is one-half, but afford this event a weight of less 
than one-half in the evaluation of a prospect. 

   Just as the value function captures diminishing 
sensitivity to changes in the number of dollars gained 
or lost, the weighting function captures diminishing 
sensitivity to changes in probability. For probability, 
there are two natural reference points: impossibility 
and certainty. Hence, diminishing sensitivity implies 
an inverse-S shaped weighting function that is con-
cave near zero and convex near one, as depicted in 
 Figure 11.2b . It can help explain the fourfold pattern of 
risk attitudes ( Table 11.2a ), because moderate to high 
probabilities are underweighted (which reinforces the 
pattern of risk aversion for gains and risk seeking for 
losses implied by the shape of the value function) and 
low probabilities are overweighted (which reverses 
the pattern implied by the value function and leads to 
risk seeking for gains and risk aversion for losses). 

  To appreciate the intuition underlying how the 
value- and weighting-functions contribute to the four-
fold pattern, refer to  Figure 11.2 . Informally, the reason 
that most participants in Tversky and Kahneman’s 
(1992) sample would rather have a .95 chance of $100 
than $77 for sure is partly because they find receiving 
$77 nearly as appealing as receiving $100 (i.e., the slope 
of the value function decreases with dollars gained), 
and partly because a .95 chance “ feels ”  like a lot less 
than a certainty (i.e., the slope of the weighting func-
tion is high near one). Likewise, most participants 
would rather face a .95 chance of losing $100 than pay 
$85 for sure is partly because paying $85 is almost as 
painful as paying $100, and partly because a .95 chance 
feels like it is much less than certain. On the other hand, 
the reason that most participants would rather have a 
.05 chance of $100 than $13 for sure is that a .05 chance 
 “ feels ”  like much more than no chance at all (i.e., the 
slope of the weighting function is steep near zero) – in 
fact it “ feels ”  like more than its objective probability, 
and this distortion is more pronounced than the feel-
ing that receiving $13 is more than 13% as attractive as 
receiving $100. Likewise, the reason most participants 
would rather lose $7 for sure than face a .05 chance of 
losing $100 is that the .05 chance of losing money looms 
larger than its respective probability, and this effect is 
more pronounced than the feeling that receiving $7 is 
more than 7% as attractive as receiving $100. 

  The inverse-S shaped weighting function also 
explains the Allais paradox because the ratio of weights 
of probabilities .8 and 1 is smaller than the ratio of 
weights of probabilities .20 and .25 (so that the differ-
ence between a .80 chance of a prize and a certainty of 
a prize in Decision 1 looms larger than the difference 

between a .20 and .25 chance of a prize in Decision 
2); similarly, the difference in the weights of prob-
abilities .99 and 1 is larger than the difference in the 
weights of probabilities .33 and .34 (so that the differ-
ence between a .99 chance and a certainty of receiving 
a prize in Decision 3 looms larger than the difference 
between a .33 chance and a .34 chance in Decision 4). 
This inverse S-shaped weighting function seems to be 
consistent with a range of empirical findings in labora-
tory studies (e.g.,  Camerer and Ho, 1994 ;  Tversky and 
Fox, 1995 ;        Wu and Gonzalez, 1996, 1998 ;  Gonzalez and 
Wu, 1999 ;  Wakker, 2001 ). Overweighting of low-prob-
ability gains can help explain why the attraction of lot-
teries tends to increase as the top prize increases even 
as the chances of winning decreases correspondingly 
( Cook and Clotfelter, 1993 ) and the attraction to long-
shot bets over favorites in horse races. Overweighting 
of low-probability losses can also explain the attrac-
tiveness of insurance ( Wakker  et al ., 1997 ).

   In sum, prospect theory explains attitudes toward 
risk via distortions in shape of the value and weight-
ing functions. The data of  Tversky and Kahneman 
(1992)  suggest that the fourfold pattern of risk atti-
tudes for simple prospects that offer a gain or a loss 
with low or high probability ( Table 11.2a ) is driven 
primarily by curvature of the weighting function, 
because the value function is not especially curved for 
the typical participant in those studies. Pronounced 
risk aversion for mixed prospects that offer an equal 
probability of a gain or loss ( Table 11.2b ) is driven 
almost entirely by loss aversion, because the curva-
ture of the value function is typically similar for losses 
versus gains and decision weights are similar for gain 
versus loss components.  

    Framing and Editing 

  Expected utility theory and most normative mod-
els of decision making under risk assume description 
invariance : preferences among prospects should not be 
affected by how they are described. Decision makers 
should act as if they are assessing the impact of options 
on final states of wealth. Prospect theory, in contrast, 
explicitly acknowledges that choices are influenced by 
how prospects are cognitively represented in terms of 
losses and gains and their associated probabilities. There 
are two important manifestations of this principle. 

  First, this representation can be systematically influ-
enced by the way in which options are described or 
 “ framed. ”  Recall that the value function is applied to 
a reference point that distinguishes between losses and 
gains. A common default reference point is the  status
quo . However, by varying the description of options 
one can influence how they are perceived. For instance, 
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decisions concerning medical treatments can differ 
depending on whether possible outcomes are described 
in terms of survival versus mortality rates ( McNeil
et al ., 1982 ); recall that people tend to be risk averse for 
moderate probability gains and risk seeking for mod-
erate probability losses. Likewise, the weighting func-
tion is applied to probabilities of risky outcomes that 
a decision maker happens to identify. The description 
of gambles can influence whether probabilities are inte-
grated or segregated, and therefore affect the decisions 
that people make ( Tversky and Kahneman, 1986 ). For 
instance, people were more likely to favor a .25 chance 
of $32 over a .20 chance of $40 when this choice was 
described as a two-stage game in which there was a .25 
chance of obtaining a choice between $32 for sure or a 
.80 chance of $40 (that is, the $32 outcome was more 
attractive when it was framed as a certainty). People 
may endogenously frame prospects in ways that are 
not apparent to observers, adopting aspirations as ref-
erence points ( Heath et al ., 1999 ) or persisting in the 
adoption of old reference points, viewing recent win-
nings as “ house money ”  ( Thaler and Johnson, 1990 ).

  Second, people may mentally transform or  “ edit ”  
the description of prospects they have been presented. 
The original formulation of prospect theory ( Kahneman 
and Tversky, 1979 ) suggested that decision makers edit 
prospects in forming their subjective representation. 
Consider prospects of the form ($ x1 ,  p1 ; $ x2 ,  p2 ; $ x3 ,  p3 ) 
that offer $ xi  with (disjoint) probability  pi  (and nothing 
otherwise). In particular, decision makers are assumed 
to engage in the following mental transformations: 

    1.      Combination . Decision makers tend to simplify 
prospects by combining common outcomes – for 
example, a prospect that offers ($10, .1; $10, .1) 
would be naturally represented as ($10, .2). 

    2.      Segregation . Decision makers tend to segregate 
sure outcomes from the representation of a 
prospect – for instance, a prospect that offers 
($20, .5; $30, .5) would be naturally represented 
as $20 for sure plus a ($10, .5). 

    3.      Cancellation . Decision makers tend to cancel shared 
components of options that are offered together – 
for example, a choice between ($10, .1; $50, .1) or 
($10, .1; $20, .2) would be naturally represented as 
a choice between a ($50, .1) or ($20, .2). 

    4.      Rounding . Decision makers tend to simplify 
prospects by rounding uneven numbers or 
discarding extremely unlikely outcomes – for 
example, ($99, .51; $5, .0001) might be naturally 
represented as ($100, .5). 

    5.      Transparent dominance . Decision makers tend to 
reject options without further evaluation if they 
are obviously dominated by other options – for 

instance, given a choice between ($18, .1; $19, .1; 
$20, .1) or ($20, .3), most people would naturally 
reject the first option because it is stochastically 
dominated by the second. 

    Applications to Riskless Choice 
  Although prospect theory was originally developed 

as an account of decision making under risk, many 
manifestations of this model in riskless choice have 
been identified in the literature. 

    Loss Aversion 

   Loss aversion implies that preferences among con-
sumption goods will systematically vary with one’s 
reference point ( Kahneman and Tversky, 1991 ; see also 
 Bateman  et al ., 1997 ), which has several manifesta-
tions. First, the minimum amount of money a person 
is willing to accept (WTA) to part with an object gen-
erally exceeds the minimum amount of money that he 
is willing to pay (WTP) to obtain the same object. This 
pattern, robust in laboratory studies using student 
populations and ordinary consumer goods, is even 
more pronounced for non-market goods, non-stu-
dent populations, and when incentives are included 
to encourage non-strategic responses ( Horowitz and 
McConnell, 2002 ).

  Likewise, people tend to value objects more highly 
after they come to feel that they own them – a phe-
nomenon known as the endowment effect  ( Thaler, 1980 ). 
For instance, in one well-known study Kahneman 
et al . (1990)  presented a coffee mug with a university 
logo to one group of participants ( “ sellers ” ) and told 
them the mug was theirs to keep, then asked these 
participants whether they would sell the mug back to 
them at various prices. A second group of participants 
( “ choosers ” ) were told that they could have the option 
of receiving an identical mug or an amount of money, 
and asked which they preferred at various prices. 
Although both groups were placed in strategically 
identical situations (walk away with a mug or money), 
the sellers, who presumably framed the choice as a  loss
of a mug against a compensating gain of money, quoted 
a median price of $7.12, whereas the buyers, who pre-
sumably framed the choice as a gain  of a mug against a 
gain of money, quoted a median price of $3.12. 

   Loss aversion is thought to contribute to the inertial 
tendency to stick with status quo  options ( Samuelson
and Zeckhauser, 1988 ) and the reluctance to trade. 
For instance, in one study Knetsch (1989)  provided 
students with a choice between a university mug and 
a bar of Swiss chocolate, and found that they had no 
significant preference for one over the other. However, 
when some students were assigned at random to 
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receive the mug and given an opportunity to trade 
for the chocolate, 89% retained the mug; when other 
students were assigned at random to receive the 
chocolate and given an opportunity to trade for the 
mug, only 10% opted for the mug. 

   Loss aversion has been invoked to help explain a 
number of anomalous patterns in field data. Notably, 
loss aversion can partly account for the powerful 
attraction of defaults on behavior – for instance, why 
organ donation rates are much higher for European 
countries with an “ opt-out ”  policy than those with 
an “ opt-in ”  policy ( Johnson and Goldstein, 2003 ), the 
tendency of consumer demand to be more sensitive to 
price increases than decreases ( Hardie  et al ., 1993 ), and 
the tendency for taxi drivers to quit after they have 
met their daily income targets, even on busy days 
during which their hourly wages are higher ( Camerer 
et al ., 1997 ). In fact,  Fehr and Gotte (2007)  found a sim-
ilar pattern among bicycle messengers in which only 
those who exhibited loss-averse preferences for mixed 
gambles tended to exert less effort per hour when 
their wage per completed job increased. 

   The stronger response to losses than foregone gains 
also manifests itself in evaluations of fairness. In par-
ticular, most people find it unfair for an employer or 
merchant to raise prices on consumers or to lower 
wages for workers unless the employer or merchant is 
defending against losses of their own, and this places 
a constraint on profit-seeking even when the market 
clearing price (wage) goes up (down) ( Kahneman
et al ., 1986 ). For instance, people find it more fair to 
take away a rebate than to impose a price increase on 
customers; most people think it is unfair for a hard-
ware store to exercise its economic power by raising 
the price of snow shovels after a snowstorm. 

  Loss aversion is also evident in riskless choice when 
consumers face tradeoffs of one product attribute 
against one another. For instance,  Kahneman and 
Tversky (1991)  asked participants to choose between 
two hypothetical jobs: Job x  was characterized as 
 “ limited contact with others ”  and a 20-minute daily 
commute; Job y  was characterized as  “ moderately 
sociable ”  with a 60-minute daily commute. Participants 
were much more likely to choose Job  x  if they had been 
told that their present job was socially isolated with a 
10-minute commute than if they had been told it was 
very social but had an 80-minute commute, consistent 
with the notion that they are loss averse for relative 
advantages and disadvantages. Loss aversion when 
making tradeoffs may partially explain the ubiquity of 
brand loyalty in the marketplace. 

   Given the disparate manifestations of loss aver-
sion, it is natural to ask to what extent there is any 
consistency in a person’s degree of loss aversion 

across these different settings.  Johnson  et al . (2007) 
approached customers of a car manufacturer and, 
through a series of simple tasks, determined each cus-
tomer’s coefficient of loss aversion in a risky context, 
as well as a measure of the endowment effect that com-
pares the minimum amount of money each participant 
was willing to accept to give up a model car and their 
maximum willingness to pay to acquire the model car. 
Remarkably, the Spearman correlation between the 
risky and riskless measures was .635, suggesting some 
consistency in the underlying trait of loss aversion. 

    Curvature of the Value Function 

   Not only does the difference in steepness of the 
value function for losses versus gains affect risk-
less choice, but so does the difference in curvature. 
Notably,  Heath  et al . (1999)  asserted that goals can 
serve as reference points that inherit properties of the 
prospect theory value function. For instance, most 
people believe that a person who has completed 42 
sit-ups would be willing to exert more effort to com-
plete one last sit-up if he had set a goal of 40 than if 
he had set a goal of 30, because the value function is 
steeper (above the reference point) in the former than 
in the latter case. Conversely, most people believe that 
a person who has completed 28 sit-ups would be will-
ing to exert more effort to complete one last sit-up if 
he had set a goal of 30 than if he had set a goal of 40, 
because value function is steeper (below the reference 
point) in the former case than in the latter case. 

   The cognitive activities that people use to frame 
and package gains and losses, known as “ mental 
accounting ”  (         Thaler, 1980, 1985, 1999 ), can influence 
the way in which riskless outcomes are experienced. 
In particular, due to the concavity of the value func-
tion for gains, people derive more enjoyment when 
gains are segregated (e.g., it’s better to win two lot-
teries on two separate days); due to the convexity of 
the value function for losses, people find it less pain-
ful when losses are integrated (e.g., it’s better to pay a 
parking ticket the same day I pay my taxes) – but see 
 Linville and Fischer (1991) .

    Extensions of Prospect Theory 
  As mentioned earlier, decision theorists distinguish 

between decisions under risk, in which probabilities 
are known to the decision maker, and decisions under 
uncertainty, in which they are not. The original formula-
tion of prospect theory (henceforth OPT;  Kahneman and 
Tversky, 1979 ) applies to decisions under risk and involv-
ing at most two non-zero outcomes.  Cumulative prospect 
theory  (henceforth CPT; Tversky and Kahneman, 1992; 
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see also Luce and Fishburn, 1991 ; Wakker and Tversky, 
1993 ) accommodates decisions under uncertainty and 
any finite number of possible outcomes. A thorough 
account of CPT is beyond the scope of this chapter, so 
we will only sketch out its distinctive features and refer 
the reader to the original paper for further detail. 

    Cumulative Prospect Theory 

   When considering simple chance prospects with at 
most two non-zero outcomes, two distinctive features 
of CPT are important. 

   First, cumulative prospect theory segregates value 
into gain portions and loss portions, with separate 
weighting functions for losses and gains (i.e., CPT 
decision weights are  sign-dependent )2.

   Second, CPT applies decision weights to cumula-
tive distribution functions rather than single events 
(i.e., CPT decision weights are  rank-dependent )3. That 
is, each outcome x  is weighted not by its probability 
but by the cumulated probabilities of obtaining an 
outcome at least as good as x  if the outcome is posi-
tive, and at least as bad as x  if the outcome is negative. 

   More formally, consider a chance prospect with 
two non-zero outcomes ( x ,  p ;  y ,  q ) that offers $ x  with 
probability  p  and $ y  with probability  q  (otherwise 
nothing). Let w% ( · ) and  w& ( · ) be the weighting func-
tion for gains and losses, respectively. The CPT valua-
tion of the prospect is given by: 

w&  ( p ) v ( x )      %       w%  ( q ) v ( y ) 

for mixed prospects,  x       $      0  $   y

     [ w% ( p       %       q )      &       w% ( q )] v ( x )      %       w% ( q ) v ( y ) 

for pure gain prospects, 0      (       x $   y

     [ w& ( p       %       q )      &       w& ( q )] v ( x )      %       w& ( q ) v ( y ) 

for pure loss prospects,  y       $       x (  0.    

   The first equation illustrates sign dependence: a 
different weighting function is applied separately to 
the loss and gain portions of mixed prospects. The 
second and third equations illustrate rank dependence 
for gains and losses, respectively: extreme ( y ) out-
comes are weighted by the impact of their respective 
probabilities, whereas intermediate outcomes ( x ) are 
weighted by the difference in impact of the probability 
of receiving an outcome at least as good as  x  and the 
impact of the probability of receiving an outcome that 
is strictly better than x . A more general characteriza-
tion of CPT that applies to any finite number of out-
comes and decisions under uncertainty is included in 
the Appendix to this chapter. 

   For decision under risk, the predictions of CPT 
coincide with OPT for all two-outcome risky pros-
pects and all mixed (gain–loss) three-outcome pros-
pects4 when one outcome is zero, assuming  w% ! w&.
Because elicitation of prospect theory parameters 
(reviewed in the following section) usually requires 
the use of two-outcome prospects, we illustrate how 
they coincide for a two-outcome (pure gain) pros-
pect below. Consider a prospect ( x ,  p ;  y ) that offers 
$x  with probability  p  and otherwise $ y , where  x       )       y . 
According to CPT: 

V x, p; y w p v y w p v x( ) [ ( )] ( ) ( ) ( )! & %1 .

  According to OPT, decision makers tend to invoke 
the editing operation of segregation , treating the 
smaller outcome y  as a certainty, and reframing the 
prospect as a  p  chance of getting an additional  x       &       y . 
Thus, we get: 

V x, p; y v y w p v x v y( ) ( ) ( )[ ( ) ( )]! % &

   which can be rearranged into the same expres-
sion as above. It is also easy to see that when y       !      0, 
V ( x ,  p )      !       w ( p )  v ( x ) under both CPT and OPT.  

    Decision Weights Under Risk Versus Uncertainty: 
the Two-stage Model 

  As we have seen, the risky weighting function is 
assumed to exhibit greater sensitivity to changes in 
probability (i.e. higher slope) near the natural bounda-
ries of 0 and 1 than in the midpoint of the scale. A char-
acterization of the weighting function that generalizes 
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2 Wu and Markle (2008)  document systematic violations of gain–
loss separability. Their results suggest different weighting function 
parameter values for mixed (gain–loss) prospects than for single 
domain (pure gain or pure loss) prospects.
3Rank-dependence is motivated in part by the concern that non-lin-
ear decision weights applied directly to multiple simple outcomes 
can give rise to violations of stochastic dominance. For instance, 
a prospect that offers a .01 chance of $99 and a .01 chance of $100 
might be preferred to a prospect that offers a .02 chance of $100 
due to the overweighting of low probabilities, even though the lat-
ter prospect dominates the former prospect. OPT circumvents this 
problem for simple prospects by assuming that transparent viola-
tions of dominance are eliminated in the editing phase; CPT han-
dles this problem through a rank-dependent decision weights that 
sum to one for pure gain or loss prospects. For further discussion of 
advantages of CPT over OPT when modeling preferences involving 
complex prospects, see  Fennema and Wakker, 1997 .

4  Gonzalez and Wu (2003)  estimated prospect theory weighting 
functions and value functions obtained from cash equivalents for 
two-outcome gambles, in which OPT and CPT coincide, and applied 
these estimates to predict cash equivalents for three-outcome gam-
bles, in which they do not. Interestingly, they found systematic over-
prediction for OPT and systematic under-prediction for CPT.
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this observation from risk to uncertainty through the 
measure of  “ bounded subadditivity ”  is presented in 
 Tversky and Fox (1995; see also Tversky and Wakker, 
1995; Wu and Gonzalez, 1999) . Informally, bounded 
subadditivity quantifies a decision-maker’s dimin-
ished sensitivity to events when they are added to 
or subtracted from intermediate events compared to 
when they are added to impossibility or subtracted 
from certainty. 

   Several studies suggest that decisions under uncer-
tainty accord well with a two-stage model in which 
participants first judge likelihood of events on which 
outcomes depend, then apply the inverse S-shaped 
weighting function to these probabilities, consistent 
with prospect theory ( Tversky and Fox, 1995 ;  Fox and 
Tversky, 1998 ; for a theoretical treatment, see  Wakker, 
2004 ). That is, the uncertain decision weight  W  of 
event E  is given by 

W E w P E( ) ( ( ))!

  where  P ( E ) is the (non-additive) judged probability 
of event E  and  w ( · ) is the risky weighting function. 
For instance, consider the prospect  “ win $100 if the 
Lakers beat the Celtics. ”  A person’s decision weight of 
 “ Lakers beat the Celtics ”  can be predicted well from 
his risky weighting function applied to his judged 
probability of the event  “ Lakers beat the Celtics. ”
Judged probabilities are assumed to accord with sup-
port theory ( Tversky and Koehler, 1994 ;  Rottenstreich 
and Tversky, 1997 ), a behavioral model that conceives 
of judged probability as the proportion of support 
that a person associates with a focal hypothesis (e.g., 
that the Lakers will win) against its complement (the 
Celtics will win).  Fox and Tversky (1998)  review sev-
eral studies that demonstrate the predictive validity of 
the two-stage model (see also  Wu and Gonzalez, 1999 ;
 Fox and See, 2003 ; but see too  Kilka and Weber, 2001 ).

    Ambiguity Aversion and Source Preferences 

  Decisions under uncertainty can be further com-
plicated by preferences to bet on particular sources of 
uncertainty.  Ellsberg (1961)  observed that people pre-
fer to bet on events with known rather than unknown 
probabilities, a phenomenon known as ambiguity aver-
sion (for a review, see  Camerer and Weber, 1992 ; see 
also  Fox and See, 2003 ). This phenomenon may par-
tially explain, for example, the common preference to 
invest in the domestic stock market and under-diver-
sify into foreign markets ( French and Poterba, 1991 ). 
Ambiguity aversion appears to be driven by reluc-
tance to act in situations in which a person feels com-
paratively ignorant of predicting outcomes ( Heath and 

Tversky, 1991 ), and such preferences tend to dimin-
ish or disappear in the absence of a direct comparison 
between more and less familiar events or with more or 
less knowledgeable individuals ( Fox and Tversky, 1995 ;
 Chow and Sarin, 2001 ;  Fox and Weber, 2002 ). For a dis-
cussion of how source preferences can be incorporated 
into the two-stage model, see  Fox and Tversky (1998) .  

    Decisions from Experience 

   Finally, situations in which people learn relative 
frequencies of possible outcomes from experience 
(e.g., as in the Iowa Gambling Task or Balloon Analog 
Risk Task), learning can be complicated by sampling 
error. In particular, according to the binomial distribu-
tion very rare events are generally more likely to be 
under-sampled than over-sampled, and the opposite 
is true for very common events. For instance, imagine 
a situation in which a decision maker samples out-
comes from two decks of cards: the first deck offers 
a .05 chance of $100 (and nothing otherwise) while 
the second deck offers $5 for sure. If decision makers 
sample a dozen cards from each deck, most will 
never  sample $100 from the first deck and there-
fore face an apparent choice between $0 for sure and 
$5 for sure, and therefore forego the 5% chance of 
$100, contrary to the pattern observed in decision 
under risk. (For further discussion of these issues, 
see  Hertwig  et al ., 2004 ;  Fox and Hadar, 2006 ). For 
further discussion of how the two-stage model can be 
extended to situations in which outcomes are learned 
from experience, see  Hadar and Fox (2008) .

    PROSPECT THEORY 
MEASUREMENT

  Several applications of prospect theory – from 
neuroeconomics to decision analysis to behavioral 
finance – require individual assessment of value and 
weighting functions. In order to measure the shape of 
the value and weighting functions exhibited by par-
ticipants in the laboratory, we must first discuss how 
these functions can be formally modeled. We next 
discuss procedures for eliciting values and decision 
weights.

    Parameterization 
  It is important to note that, in prospect theory, value 

and weighting functions are characterized by their 
qualitative properties rather than particular functional 
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forms. It is often convenient, however, to fit data to 
equations that satisfy these qualitative properties. 
A survey of parameterizations of prospect theory’s 
value and weighting functions can be found in Stott
(2006) . We review below the functional forms that have 
received the most attention in the literature to date. 

   Value Function 

   The value function is assumed to be concave for 
gains, convex for losses, and steeper for losses than 
for gains. By far the most popular parameterization, 
advanced by Kahneman and Tversky (1992) relies on 
a power function: 

v x x x
x x( ) ( )!

'
& & $

α
β

0
0λ






 (V1)

   where  α ,  β       )      0 measure the curvature of the value 
function for gains and losses, respectively, and  λ  is 
the coefficient of loss aversion. Thus, the value func-
tion for gains (losses) is increasingly concave (convex) 
for smaller values of α ( β )      $      1, and loss aversion is 
more pronounced for larger values of  λ       )      1.  Tversky 
and Kahneman (1992)  estimated median values of 
α       !      .88,  β       !      .88, and  λ       !      2.25 among their sample 
of college students. In prospect theory the power 
function is equivalent to preference homotheticity : as the 
stakes of a prospect ( x ,  p ) are multiplied by a constant 
k , then so is the certainty equivalent of that prospect, 
C ( x ,  p ) so that  C ( kx ,  p )      !       kC  ( x ,  p ). (see, e.g.,  Tversky, 
1967 ). Empirically this assumption tends to hold up 
only within an order of magnitude or so, and as the 
stakes of gambles increase by orders of magnitude, 
risk aversion tends to increase for gains – especially 
when the stakes are real ( Holt and Laury, 2002 );
the evidence for losses is mixed ( Fehr-Duda  et al ., 
2007 ). Thus, for example, a person who is indifferent 
between $3 and ($10, .5) will tend strictly to prefer 
$30 over ($100, .5). Nevertheless, most applications 
of prospect theory have assumed a power value 
function. Other common functional forms include 
the logarithmic function v ( x )      !      ln ( α       %       x ), originally 
proposed by Bernoulli (1738), which captures the 
notion that marginal utility is proportional to wealth, 
and quadratic v ( x )      !       α x       &       x2 , which can be refor-
mulated in terms of a prospect’s mean and variance, 
which is convenient in finance models. (For a discus-
sion of additional forms including exponential and 
expo-power, see  Abdellaoui  et al ., 2007a .)

   Surprisingly, there is no canonical definition or 
associated measure of loss aversion, though several 
have been proposed. First, in the original formula-
tion of prospect theory ( Kahneman and Tversky, 

1979 ), loss aversion was defined as the tendency 
for the negative value of losses to be larger than the 
value of corresponding gains (i.e.,  &v ( &x )      )       v ( x ) for 
all x       )      0) so that a coefficient of loss aversion might 
be defined, for example, by the mean or median value 
of &v ( &x )/ v ( x ) over a particular range of  x . Second, 
the aforementioned parameterization (V1) from 
 Tversky and Kahneman (1992)  that assumes a power 
value function implicitly defines the loss aversion as 
the ratio of value of losing a dollar to gaining a dollar 
(i.e.,      &v ( & $1)      )       v ($1)) so that the coefficient is defined 
by &v ( & $1)/ v ($1). Third,  Wakker and Tversky (1993) 
defined loss aversion as the requirement that the slope 
of the value function for any amount lost is larger than 
the slope of the value function for the corresponding 
amount gained (i.e., v* ( &x )      )       v* ( x )) so that the coeffi-
cient can be defined by the mean or median value of 
v* ( &x )/ v* ( x ). Note that if one assumes a simplified 
value function that is piecewise linear (as in, for exam-
ple,  Tom  et al ., 2007 ), then all three of these definitions 
coincide. For a fuller discussion, see  Abdellaoui  et al . 
(2007b) .

   Weighting Function 

   In fitting their data,  Tversky and Kahneman (1992) 
asserted a single-parameter weighting function: 

w p p p p( ) ( ( ) )! % &γ γ γ γ/ ./1 1  (W1)

   This form is inverse-S shaped, with overweighting 
of low probabilities and underweighting of moderate 
to high probabilities for values of  γ       $      1. This function 
is plotted for various values of γ  in  Figure 11.3A   . 

   Perhaps the most popular form of the weight-
ing function, due to Lattimore  et al.  (1992 ; see also 
 Goldstein and Einhorn, 1987 ) assumes that the rela-
tion between w  and  p  is linear in a log-odds metric: 

ln ln ln
w p

w p
p

p
( )

( )1 1& &
! %γ δ

which reduces to 

w p
p

p p
( )

( )
!

% &

δ
δ

γ

γ γ1  (W2)

   where  δ       )      0 measures the elevation of the weighing 
function and γ       )      0 measures its degree of curvature. 
The weighting function is more elevated (exhibiting 
less overall risk aversion for gains, more overall risk 
aversion for losses) as δ  increases and more curved 
(exhibiting more rapidly diminishing sensitivity to 
probabilities around the boundaries of 0 and 1) as  γ       $      1 
decreases (the function exhibits an S-shaped pattern 
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that is more pronounced for larger values of  γ       )      1). 
Typically, the decision weights of complementary 
events sum to less than one ( w ( p )      %       w (1      &      p)      $      1), 
a property known as  subcertainty  ( Kahneman and 
Tversky, 1979 ). This property is satisfied whenever 
δ       $      1. The Lattimore function is plotted for various 
values of the elevation parameter δ  and curvature 
parameter γ  in  Figures 11.3b and 11.3c , respectively. 

          Prelec (1998; see also 2000)  derived a functional 
form of the weighting function that accommodates 
three principles: (1) overweighting of low probabilities 
and underweighting of high probabilities; (2) sub-
proportionality of decision weights (a condition that 
derives from the common ratio effect, decisions 1 and 
2 above); and (3) sub-additivity of decision weights (a 
condition that derives from the common consequence 
effect, decisions 3 and 4 above). These three principles 
are all subsumed by a single axiom called  compound
invariance5 which implies the following functional 
form of the weighting function: 

w p p( ) exp[ ( ln ) ]! & &δ γ (W3A)

   where  δ ,  γ       )      0. When  δ       !      1, Prelec’s function collapses 
to a single-parameter form: 

w p p( ) exp[ ( ln ) ]! & & γ  (W3B)

   which implies a weighting function that crosses the 
identity at 1/ e . Prelec’s two-parameter function is 
plotted for various values of the elevation parameter 
δ  in  Figure 11.3d , and the one-parameter function (i.e., 
δ       !      1) is plotted for various values of the curvature 
parameter γ  in  Figure 11.3e .   

   The prospect theory value and weighting function 
parameters can all be estimated for individuals using 
simple choice tasks on computer.  Table 11.3    presents 
measured parameters for monetary gambles from sev-
eral studies that have assumed a power value function 
and various weighting functions described above. 

  Although the typical measured values of these 
parameters suggest an S-shaped value function (0      $       α , 
β       $      1) with loss aversion ( λ       )      1), and an inverse-S 
shaped weighting function that crosses the identity line 
below .5, there is considerable heterogeneity between 
individuals in these measured parameters. For instance, 
in a sample of 10 psychology graduate students evalu-
ating gambles involving only the possibility of gains, 
 Gonzalez and Wu (1999)  obtained measures of  α  in the 

range from .23 to.68 (V1),  δ  in the range from .21 to 1.51, 
and γ  in the range from .15 to .89 (W2). 

  As a practical matter, although the two-parameter 
functions (W2) and (W3) have different axiomatic 
implications, they are difficult to distinguish empiri-
cally in the normal range (i.e., .01 to .99) of probabili-
ties (see  Gonzalez and Wu, 1999 ). For the remainder of 
the chapter, we will refer to the parameters from the 
 Lattimore  et al . (1992)  function (W2). 

    Interaction of v( · ) and w( · ) 

  As mentioned above, prospect theory value and 
weighting functions both contribute to observed risk 
attitudes: concavity (convexity) of the value function 
contributes to risk aversion (seeking) for pure gain 
(loss) prospects that is reinforced by underweight-
ing of moderate to high probabilities and reversed 
by overweighting of low probabilities; loss aversion 
contributes to risk aversion for mixed prospects. To 
see more clearly how the value and weighting func-
tions interact, consider the simple case of a prospect 
(x , p ) that offers $ x  with probability  p  (and nothing 
otherwise). Let c ( x ,  p ) be the certainty equivalent of 
(x ,  p ). For instance, a decision maker for whom  c (100, .5) 
!      30 is indifferent between receiving $30 for sure or 
50–50 chance of $100 or nothing. Thus, this decision 
maker would strictly prefer the prospect to $29 and 
would strictly prefer $31 to the prospect. If we elicit 
certainty equivalents for a number of prospects in 
which we hold x  constant and vary  p , then we can 
derive a plot of normalized certainty equivalents ,  c/x  as 
a function of probability. Such a plot can be instruc-
tive, because it indicates probabilities (of two-out-
come gambles) for which the decision maker is risk 
seeking ( c/x       )       p ), risk neutral ( c / x       !       p ), and risk 
averse ( c / x       $       p ) by whether the curve lies above, on, 
or below the identity line, respectively. 

   To see how  w ( · ) and  v ( · ) jointly contribute to risk 
attitudes, note that, under prospect theory,  V ( c )      !       V ( x ,
p ), so that  v ( c )      !       w ( p ) v ( x ) or  w ( p )      !       v ( c )/ v ( x ). Assuming 
the power value function (V1), we get w ( p )      !      ( c/x ) α , or 

c x w p/ ./! ( )1 α

  In the case of gains, normalized certainty equiva-
lents will increase with the parameter  α  and, assuming 
a concave value function ( α       $      1) that is correctly meas-
ured, they will be lower than corresponding decision 
weights. These observations give rise to two important 
implications. First, overweighting of low probabilities 
does not necessarily translate into risk-seeking for low-
probability gains. To illustrate, consider the weighting 
function obtained from the median data of  Gonzalez and 

5Defined as: for any outcomes x, y, x* , y* , probabilities q, p, r, s, and 
the compounding integer N '1, if (x, p) !  (y, q) and (x, r) !  (y, s)
then (x* , pN) !  (y* , qN) implies (x* , rN) !  (y* , sN).
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FIGURE 11.3      Most common parametric forms used for modeling the probability weighting function from prospect theory.      (a)     Tversky
and Kahneman’s (1992) function for various values of γ  (W1).       (b)     Lattimore  et al .’s (1992) function for various values of  δ  assuming  γ       !      .5 (W2).   
    (c)     Lattimore  et al .’s (1992) function for various values of  γ  assuming  δ       !      .5 (W2).       (d)     Prelec’s (1998) function for various values of  δ  assuming 
γ       !      .5 (W3A).       (e)     Prelec’s (1998) function for various values of  γ  assuming  δ       !      1 (W3B).               
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TABLE 11.3         Measured value function parameters for money from several studies   

   Functional form  Study  Subject population  Parameter 
estimates

 (a)  

(V1) v x x x
x x( ) ( )!

'
& & $

α
βλ

0
0






  Tversky and Kahneman (1992)    n       !      25 graduate students (median 
fitted parameters) 

α       !      .88 
β       !      .88 
λ       !      2.25 

  Camerer and Ho (1994)   Weighted average of nine studies reviewed   α       !      .23 

  Wu and Gonzalez (1996)  n       !      420 undergraduates (fitted to 
binary choice data) 

α       !      .49 

  Gonzalez and Wu (1999)  n       !      10 psychology graduate students 
(median data) 

α       !      .49 

  Abdellaoui (2000)  n       !      46 economics students (median 
data)

α       !      .89 
β       !      .92 

  Etchart-Vincent (2004) n       !      35 business students (median data) β       !      .97 

  Abdellaoui  et al . (2005)  n       !      41 business graduate students (median 
fitted parameters) 

α       !      .91 
β       !      .96 

  Stott (2006)  n       !      96 university students (median 
fitted data) 

α       !      .19 

  Abdellaoui  et al . (2007b)  n       !      48 economics students (median data)   α       !      .75 
β       !      .74 

  Abdellaoui  et al . (2007c)  n       !      48 economics and math graduate 
students (median data) 

α       !      .86 
β       !      1.06 
λ       !      2.61 

(b)

   (W1)  W ( p )      !       pγ /( pγ       %      (1      &       p ) γ ) 1/γ    Tversky and Kahneman (1992)    n       !      25 graduate students (median 
fitted parameters) 

γ%       !      .61 
γ&       !      .69 

  Camerer and Ho (1994)    Weighted average of nine studies reviewed   γ%       !      .56 

  Wu and Gonzalez (1996) n       !      420 undergraduates (fitted to 
binary choice data) 

γ%       !      .71 

  Abdellaoui (2000)  n       !      46 economics students (median 
data)

γ%       !      .60 
γ&       !      .70 

  Stott (2006)  n       !      96 university students (median 
fitted data) 

γ%       !      .96 

(W2) w p
p

p p
( )

( )
!

% &

δ
δ

γ

γ γ1
  Tversky and Fox (1995) n       !      40 student football fans (median data, 

with α       !      .88) 
γ%       !      .69 
δ%       !      .77 

  Wu and Gonzalez (1996) n       !      420 undergraduates (fitted to 
binary choice data) 

γ%       !      .68 
δ%       !      .84 

  Gonzalez and Wu (1999)  n       !      10 psychology graduate students 
(median data) 

γ%       !      .44 
δ%       !      .77 

  Abdellaoui (2000)  n       !      46 economics students (median 
data)

γ%       !      .60
δ%       !      .65 
γ&       !      .65
δ&       !      .84 

  Abdellaoui  et al . (2005)  n       !      41 business graduate students (median 
data)

γ%       !      .83 
δ%       !      .98 
γ&       !      .84 
δ&       !      1.3 

  Stott (2006)  n       !      96 university students (median 
fitted data) 

γ%       !      1.4
δ%       !      .96 

   (W3A)  w ( p )      !      exp[ &δ ( & ln  p ) γ ]   Stott (2006)  n       !      96 university students (median 
fitted data) 

γ%       !      1.0 
δ%       !      1.0 

   (W3B)  w ( p )      !      exp[ & (&ln p ) γ ]   Wu and Gonzalez (1996) n       !      420 undergraduates (fitted to 
binary choice data) 

γ%       !      .74 

  Stott (2006)  n       !      96 university students (median 
fitted data) 

γ%       !      1.0 
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Wu (1999) , assuming the  Lattimore  et al . (1992)  function 
(W2), with δ       !      .77,  γ       !      .44, which illustrates consider-
able overweighting of low probabilities; for example, 
w (.05)      !      .17. In that study, the authors obtained 
α  in the range from .68 (moderate concavity) to .23 
(extreme concavity) for their ten participants. Using 
these extreme values, we obtain wildly different  c / x
functions as depicted in Figure 11.4   . For instance, given 
these values c (100, .05)      !      7.65 and .05, respectively, indi-
cating moderate risk-seeking and extreme risk aversion, 
respectively. 

   Second, the interaction of value- and weighting-
functions makes it difficult empirically to distin-
guish variations in the measured elevation of the 
weighting function from variations in the meas-
ured curvature of the value function. For instance, 
as mentioned above, when α       !      .68,  δ       !      .77, and 
γ       !      .44. we get  c (100, .05)      !      7.65. This same cer-
tainty equivalent follows assuming, for example, 
α       !      .88,  δ       !      .42, and  γ       !      .44. Both of these normal-
ized certainty equivalent functions are illustrated in 
 Figure 11.5   . Thus, if one is concerned with parsing 
the contribution of subjective value versus prob-
ability weighting on observed risk attitudes, it is 
important to elicit the value and weighting func-
tions with care. For instance, if one assumes a sin-
gle parameter weighting function (e.g., (W1) or 
(W3B)) when “true” weighting functions vary in 
their elevation, incorrect measures may be obtained. 

A researcher may believe that a particular pattern of 
neural activity covaries with curvature of the value 
function, when in fact it covaries with elevation of 
the weighting function.    

    Elicitation 
   Several methods have been proposed for eliciting 

value and weighting function parameters. Broadly 
speaking, these methods fall into four categories: 

    1.     Statistical methods that estimate  v ( xi ) and  w ( pi ) 
from a participant’s cash equivalents for prospects 
that factorial combine each xi  ,  and  pi   .

    2.     Non-parametric methods that separately assess 
values then assess decision weights, making no 
assumptions concerning the functional form of the 
value-and weighting-functions. 

    3.     Semi-parametric methods that assume a functional 
form for the value- or weighting-function and 
assess the other function non-parametrically. 

    4.     Parametric methods that assume a functional form 
of both the value and weighting functions. 

   We will review each of these methods in turn then 
evaluate their relative strengths and weaknesses. 

    Statistical Method:  Gonzalez and Wu (1999) 

   Perhaps the most careful elicitation method of 
prospect theory value and weighting functions to 
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FIGURE 11.4      Normalized certainty equivalents as a function 
of probability assuming the Lattimore weighting function, with 
δ       !      .77 and  γ       !      .44 (median values from  Gonzalez and Wu, 1999 )
and assuming a power value function, with α       !      .23 and .68 (the 
range obtained from participants of  Gonzalez and Wu, 1999 ). This 
figure illustrates the interaction of the value and weighting func-
tions in determining risk attitudes. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 0
p

C
/X

Alpha ! 0.88; Delta ! 

0.42; Gamma ! 0.44

Alpha ! 0.68; Delta ! 

0.77; Gamma ! 0.44

FIGURE 11.5      Normalized certainty equivalents as a function of 
probability assuming the Lattimore weighting function and power 
value function with α       !      .68,  δ       !      .77, and  γ       !      .44. versus  α       !      .88, 
δ       !      .42, and  γ       !      .44. This figure illustrates the difficulty empirically 
distinguishing between elevation of the weighting function and 
curvature of the value function. 

PROSPECT THEORY MEASUREMENT

Author’s personal copy



II. BEHAVIORAL ECONOMICS AND THE BRAIN

11. PROSPECT THEORY AND THE BRAIN160

date was advanced by  Gonzalez and Wu (1999) . Ten 
graduate students in Psychology from the University 
of Washington were paid $50 plus an incentive-com-
patible payment (contingent on their choices) for their 
participation in four 1-hour sessions on com puter6.
Participants were presented with 15 two-outcome 
(non-negative) gambles crossed with 11 probabilities 
(! 165 gambles), presented in a random order. 

   Certainty equivalents were assessed for each gam-
ble through a series of choices. For instance, consider 
the prospect that offered a 50–50 chance of $100 or 
nothing. A participant was asked if he preferred to 
receive the prospect or various sure amounts that 
ranged from $100 to $0 in increments of $20. If a par-
ticipant indicated that he preferred $40 for sure over 
the prospect but preferred the prospect over $20 
for sure, then a second round of choices would be 
presented that spanned this narrower range (from 
$40 to $20). This process was repeated until certainty 
equivalents could be estimated to the nearest dol-
lar. If, for example, a participant indicated a prefer-
ence for a sure $36 over the prospect but a preference 
for the prospect over a sure $35, then the researchers 
estimated c (100, .5)      !      35.5. 

   The estimation procedure used by  Gonzalez and 
Wu (1999)  was non-parametric in that it did not make 
any assumptions concerning the functional form of the 
v ( · ) or  w ( · ). Their algorithm treated the value of each 
of the possible outcomes and the weight of each of the 
probabilities presented as a parameter to be estimated. 
These parameters were estimated using an alternat-
ing least squares procedure in which each step either 
held w  constant and estimated  v  or held  v  constant 
and estimated w . The authors assert that this analysis 
converged on parameter estimates relatively quickly. 

   The statistical method of  Gonzalez and Wu (1999) 
has several advantages over alternative methods. 
The elicitation is not very cognitively demanding, 
as participants are merely required to price two-out-
come gambles. The procedure gives rise to estimates 
of values and decision weights that are not distorted 
by parametric misspecification. On the other hand, 
the procedure is demanding of participants ’  time as 

it requires pricing of a large number of gambles to 
get stable estimates (the original study required par-
ticipants to assess 165 two-outcome gambles, each 
through a series of several choices). The procedure 
has not yet been applied to the domain of losses or 
mixed prospects, but such an extension would be 
straightforward.  

    Non-parametric Methods 

   Several other fully non-parametric methods have 
been advanced for analytically assessing v ( · ) and  w ( · ). 
All of them rely on a two-stage process in which  v ( · ) 
is assessed in a first phase, then applied to the meas-
urement of  w ( · ). The most popular approach to assess-
ing values that makes no assumptions concerning the 
weighting of probabilities is the  tradeoff method  ( Wakker 
and Deneffe, 1996 ). The tradeoff method requires par-
ticipants to make choices between two two-outcome 
prospects ( x, p; y ) that offer $ x  with probability  p  oth-
erwise $ y  , with one of the outcomes adjusted follow-
ing each choice until indifference between the gambles 
can be established. Consider a pair of reference out-
comes R       )       r , a pair of variable outcomes  x1       )       x0 , and 
a fixed probability  p . On each trial the values of  R ,  r , 
x0 , and  p  are fixed, and  x1  is varied until the partici-
pant reveals that 

( ) ( )x , p; r x , p; R1 0! .

   For instance, a participant might be offered a choice 
between a 50–50 chance of $100 or $20 versus a 50–50 
chance of $70 or $40. If the participant prefers the 
latter gamble, then the variable payoff of the first 
gamble ($100) adjusts to a higher amount (say, $110). 
The variable amount can be raised or lowered by 
decreasing increments until the participant confirms 
that both prospects are equally attractive. Once indif-
ference is established for this first pair of prospects, 
the procedure is repeated for a second pair of pros-
pects with the same probability and reference out-
comes, but a new variable outcome x2       )       x1 , until it is 
established that: 

( ) ( )x , p; r x , p; R2 1! .

  According to CPT7, the first indifference gives us 

v r w p v x w p v R w p
v x w p

( )[ ( )] ( ) ( ) ( )[ ( )]
( ) ( )

1 11

0

& % ! &
%

6An incentive-compatible payoff is a payment contingent on choice 
that encourages honest responses by participants. Experimental 
economists are generally skeptical of results of studies that do not 
include such incentives whereas experimental psychologists gen-
erally put more credence into responses to purely hypothetical 
choices. In practice, the addition of incentives tends to reduce noise 
in participant responses and may lead to decreased framing effects 
and greater risk aversion (for reviews, see  Camerer and Hogarth, 
1999 ;  Hertwig and Ortmann, 2001) .

7Assuming x0       )      R; this result can be relaxed without affecting the 
result of the elicitation.
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   so that 

w p v x v x w p v R v r( )[ ( ) ( )] [ ( )][ ( ) ( )]1 0 1& ! & &

   and the second indifference gives us 

v r w p v x w p v R w p
v x w p

( )[ ( )] ( ) ( ) ( )[ ( )]
( ) ( )

1 12

1

& % ! &
%

   so that 

w p v x v x w p v R v r( )[ ( ) ( )] [ ( )][ ( ) ( )]2 1 1& ! & & .

   Together these indifferences imply equal value 
intervals as follows: 

v x v x v x v x( ) ( ) ( ) ( ).1 0 2 1& ! &

   Setting  x0       !      0 and  v ( x0 )      !      0, we get  v ( x2 )      !      2 v ( x1 ). 
By eliciting similar yoked indifferences to obtain  x3 ,  x4 , 
etc., we can generate a standard sequence of outcomes 
that are spaced equally in subjective value space to 
construct a parameter-free value function for gains. 
A similar exercise can be repeated in the measurement 
of the value function for losses (for an example in the 
domain of losses, see Fennema and van Assen, 1999 ).

   Once a measure of several values has been obtained 
from a participant, one can proceed to measure deci-
sion weights non-parametrically. Arguably the most 
popular method, advanced by  Abdellaoui (2000) , uses 
the standard sequence of outcomes  x0 , ...,  xn  to elicit 
a standard series of probabilities  p1 , ... ,  pn&1  that are 
equally spaced in terms of their decision weights. This 
is done by eliciting probabilities such that a mixture 
of the highest and lowest outcome in the standard 
sequence is equally attractive to each of the internal 
outcomes in that sequence. Thus, by establishing for 
each xi  ( i       !      1, ... ,  n      &       1) the following indifference: 

( , ; )x p x xn i i0 ! .

   CPT implies: 

w p
v x v x
v x v xi

i

n
( )

( ) ( )
( ) ( )

!
&

&
0

0
.

   Because the values of  xi  were constructed, using the 
tradeoff method, to be equally spaced in terms of their 
expected value, the above equation reduces to: 

w p i ni( ) ! / .

   An analogous procedure can be followed for losses. 

   Bleichrodt and Pinto (2000)  advanced a similar 
two-step procedure that first relies on the tradeoff 
method to elicit a standard sequence of outcomes, 
then elicits decision weights through a matching pro-
cedure. Instead of eliciting probabilities that lead to 
indifference between prospects, their method fixes 
probabilities and elicits outcomes that match pairs of 
two-outcome prospects8. Such a procedure was used to 
measure the weighting function for losses by  Etchart-
Vincent (2004) . Another similar method has recently 
been proposed by  van de Kuilen et al . (2006) , though 
in an experiment this method yielded a weighting 
function for gains that was convex rather than the cus-
tomary inverse-S shape (concave then convex). 

   The aforementioned non-parametric elicitations 
can be used to assess value- and weighting-functions 
separately for gains and losses. Because the value 
function is a ratio scale (unique to multiplication by a 
positive constant) a separate procedure using mixed 
(gain&     loss) gambles is required to assess loss aver-
sion. A parameter-free procedure has been advanced 
by  Abdellaoui  et al . (2007b) . Details of the procedure 
are beyond the scope of this chapter, but the gist is as 
follows. The first step entails determining, through a 
series of indifferences between prospects, the prob-
abilities pg  and  pl  for which  w% ( pg ) and  w& ( pl )      !      1/2. 
This allows determination, in a second stage, of out-
come amounts that are midpoints in value space for 
losses. The third stage links value for losses and gains 
through a series of indifferences that determines a gain 
outcome that is the mirror image of a loss outcome in 
value space (i.e., has the same absolute value of util-
ity/value). Finally, the fourth step repeats the second 
step by determining outcomes that are midpoints in 
value space for gains. The method of  Abdellaoui  et al . 
(2007b)  is mathematically elegant and yielded clean 
results consistent with prospect theory in the analy-
sis of aggregate data from a sample of 48 economics 
students. However, the task is cognitively demanding, 
as it involves choices between pairs of two-outcome 
gambles, and laborious, as it entails a complex four-
step procedure. 

   Non-parametric methods tend to be less time con-
suming than statistical methods of elicitation. Also, 
unlike semi-parametric and fully parametric methods, 
they make no assumptions concerning the functional 
form of the value and weighting functions that might 
distort measurement, though functions can be fitted 
to the measured values and weights that are obtained. 

PROSPECT THEORY MEASUREMENT

8Note that because the new outcomes may not be included in the 
standard sequence this method requires an interpolation procedure 
and thus is not fully non-parametric. 
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Moreover, non-parametric methods preserve a direct 
link between specific choices and measured utilities 
so that specific inconsistencies can be traced to partic-
ular choices. Unfortunately, non-parametric methods 
are generally quite cognitively demanding, requiring 
choices between multiple two-outcome prospects (or 
even more complicated choices). Thus, these methods 
may not give utterly robust measurements, as par-
ticipants may fall back on decision heuristics (such as 
expected value maximization) or respond in an incon-
sistent manner. Moreover, because these methods 
generally rely on elicitation of a standard sequence 
of values using the tradeoff method, there is the pos-
sibility that error in measuring the first step in the 
sequence will be propagated throughout the measure-
ment of values and therefore lead to further error in 
the measurement of decision weights (however, stud-
ies that have investigated error propagation have thus 
far found no large effect; see  Bleichrodt and Pinto, 
2000 ;  Abdellaoui  et al ., 2005 ). Note that only meth-
ods listed as allowing simultaneous measurement of 
both v% and v& can also allow measurement of loss 
aversion.

    Semi-Parametric Methods 

  Semi-parametric elicitation methods assume a 
parametric form of the value function in order to 
derive non-parametric estimates of decision weights. 
The simplest semi-parametric approach is to assume 
a power value function, v ( x )      !       xα , as fitted to non-
parametric measurement of value using the tradeoff 
method (or assuming representative parameters from 
previous studies of similar participant populations). 
Next, decision weights for various probabilities can be 
determined by eliciting certainty equivalents c ( x , pi ) 
for prospects that pay a fixed amount  x  with probabili-
ties pi . According to prospect theory,  c(x, pi)α ! w(pi)xα.
 Thus, each decision weight is given by: 

w p c x p xi i( ) [ ( , ) ]! / .α

   Of course, this method depends on the accuracy of the 
first-stage measurement of utility. 

  A more elegant semi-parametric method was 
recently advanced by  Abdellaoui  et al . (2007c) . This 
method entails three stages. In the first stage, the value 
function for gains is elicited and decision weights are 
measured parameters. This is done by eliciting cer-
tainty equivalents Gi  for a series of prospects ( xi ,  pg ;  yi ) 
(xi       )       yi       '      0,  i       !      1, ...,  k ). According to CPT: 

v G v y w p v x w pi i g i g( ) ( )[ ( )] ( ) ( )! & %1 .

   Define  w ( pg )  "   ω%  and assume a power value func-
tion v ( x )      !       xα . We get: 

G w x y yi i i i! & %% + + + +( ( ) )1/ .

   Thus, by varying  xi  and  yi  and measuring cash 
equivalents Gi , the parameters  ω%  and  α  can be 
estimated using non-linear regression. An analo-
gous method can be used for the domain of losses 
to measure  ω& , the decision weight of losing with 
probability  pl = 1 – pg, and β , the power value coef-
ficient for losses. Finally, a third stage links the value 
function for gains and losses by selecting a gain 
amount G*  within the range of value measured in 
step 1, then determining the loss amount L*  such that a 
participant finds the mixed prospect ( G* ,  pg ; L* ) barely 
acceptable (i.e., is indifferent to playing the prospect 
or not). This implies that: 

w v G w v L v% &% ! !( *) ( *) ( )λ 0 0

   so one can easily solve for  λ . Although the method 
of Abdellaoui  et al . (2007c) is designed to elicit value 
function and loss aversion parameters, it also pro-
vides as a byproduct measurement of a decision 
weight.  By repeating the procedure for various prob-
abilities of gain and loss, several decision weights can 
be obtained for mapping more complete weighting 
functions.

   Semi-parametric methods provide a compromise 
between accuracy of a non-parametric elicitation 
method and the efficiency of a parametric method. 
They tend to be less cognitively demanding and less 
time consuming than pure non-parametric methods 
and the statistical method.  

    Parametric Methods 

   The final method for eliciting prospect theory 
value- and weighting-functions is a purely paramet-
ric approach.  Tversky and Kahneman (1992)  elicited 
cash equivalents for a number of single- and two-out-
come prospects entailing pure gains, pure losses, and 
mixed outcomes. These were entered into a non-linear 
regression assuming a power value function (V1) and 
single-parameter weighting function (W1). 

  A simpler procedure can be executed using Prelec’s 
(1998) single-parameter weighting function (W3B) 
and a power value function. If we elicit a number of 
certainty equivalents cij  for prospects that pay $ xi  with 
probability  pj , then we get by prospect theory: 

c x pij i
α α γ! &exp .[ (ln ) ]
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   Collecting outcomes on the left side of the equation 
and taking the double log of both sides, we get: 

& & ! % & &ln[ ln( )] ln( ) [ ln( ln )]c x pij i j/ .α γ

   This equation lends itself to linear regression to deter-
mine the parameters α  and  γ .

   Parametric estimation of value and weighting func-
tions has several advantages over other methods. The 
task of pricing simple prospects is cognitively tracta-
ble, the time requirements are relatively small, and 
this method tends to yield relatively reliable meas-
urement. On the other hand, this method is suscepti-
ble to parametric misspecification, particularly if one 
assumes a single parameter weighting function (as in 
the method of Prelec described above) so that it is dif-
ficult to distinguish the curvature of the value func-
tion from elevation of the weighting function. 

   Table 11.4    summarizes the major methods for pros-
pect theory elicitation, listing strengths and weaknesses 
of each method. All entail tradeoffs, and the particular 
method used by researchers will be determined by the 
cognitive sophistication of participants, time constraints, 
and technical constraints of the study in question. 

    Determining Certainty Equivalents 
   Several elicitation methods discussed above require 

determination of certainty equivalents of various 
prospects. The most straightforward (but cognitively 
demanding) method is to elicit them directly by ask-
ing participants for the sure amount of money  c
that they find equally attractive to a prospect ( x ,  p ). 
Participants can be provided incentives for accuracy 
using the method described by Becker et al . (1964)9 . 

Alternatively, one might ask participants for the prob-
ability p  such that they find the prospect ( x ,  p ) equally 
attractive to the sure amount  c . Empirically such elici-
tations tend to be quite noisy, but they are quick and 
convenient.

   We caution researchers against such direct match-
ing procedures. Prospect theory was originally articu-
lated as a model of simple choice between prospects. 
Direct elicitation of sure amounts or probabilities to 
match prospects relies on the assumption of  proce-
dure invariance : two strategically equivalent methods 
of assessing preference should lead to the identi-
cal orderings between prospects. Unfortunately, this 
assumption is routinely violated. First, people gener-
ally afford more weight to outcomes relative to prob-
abilities when they price prospects than when they 
choose between them. This can give rise to preference 
reversal , in which participants price a low-probabil-
ity high-payoff bet (e.g., a 3/36 chance to win $100) 
above a high-probability low-payoff bet (e.g., a 28/36 
chance to win $10) even though they prefer the latter 
to the former when facing a simple choice between 
them (see, for example, Tversky et al ., 1990 ). Second, 
people tend to be more risk averse when matching 
prospects by varying probabilities than when match-
ing prospects by varying outcomes ( Hershey and 
Schoemaker, 1985 ). For instance, suppose that a par-
ticipant is asked to report what  p  of receiving $100 (or 
else nothing) is equally attractive to receiving $35 for 
sure, and this participant reports a probability of .5. If 
that same participant is asked what certain amount is 
equally attractive to a .5 chance of $100, he will gener-
ally report a value greater than $35. 

  A popular alternative for overcoming limitations 
of direct matching procedures is to estimate cash 
equivalents from a series of choices. For instance, in 
pricing the prospect (100, .5) that offers a .5 chance 
of $100, participants can be offered a series of choices 
between (100, .5) or $100 for sure, (100, .5) or $90 
for sure, and so forth. For instance, if a participant 

TABLE 11.4         Major elicitation methods  

   Method class  Reference  Prospect theory 
component(s)

 Cognitive 
demands

 Time required 

   Statistical   Gonzalez and Wu (1999)   All  Low  High 

   Non-parametric   Wakker and Deneffe (1996)    v%  or  v&   High  Medium 

  Abdellaoui  et al . (2007b)    v%  and  v&   High  Medium 

  Abdellaoui (2000)    w%  or  w&   High  Medium 

  Bleichrodt and Pinto (2000)    w%  or  w&   High  Medium 

   Semi-parametric   Abdellaoui  et al . (2007c)    v%  and  v&,  limited 
w% ,  w&

 Medium  Low 

   Parametric   Prelec (1998)    v% ,  w%  or  v& ,  w&   Low  Medium 

PROSPECT THEORY MEASUREMENT

9This method is only incentive-compatible assuming the independ-
ence axiom, which of course is violated in prospect theory. For a 
further discussion see Karni and Safra, 1987 .
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chooses $40 for sure over (100, .5) but also chooses 
(100, .5) over $30 for sure, then by linear interpolation 
we can estimate his cash equivalent as approximately 
$35. If a researcher tells participants that a randomly 
selected choice (from a randomly selected trial) will 
be honored for real money, then this method will be 
incentive-compatible (i.e., participants will have an 
economic incentive to respond honestly). 

   Sure amounts can be evenly spaced (e.g.,  Tversky
and Fox, 1995 ) or logarithmically spaced (e.g.,  Tversky
and Kahneman, 1992 ). If a researcher wishes to obtain 
higher-resolution estimates of cash equivalents, the 
sequential choice method cannot be readily accom-
plished in a single round. One approach is to use an 
iterated procedure in which a first-course evaluation 
is made followed by a more detailed series of choices 
etc. (e.g.,  Tversky and Kahneman, 1992 ;  Tversky and 
Fox, 1995 ;  Gonzalez and Wu, 1999 ). For instance, if a 
participant prefers $40 to (100, .5) but $30 to (100, .5) 
then four more choices might be presented between 
(100, .05) and $28, $26, $24, $22. Another, maximally 
efficient, approach is the  “ bisection method ”  in which 
each time a choice is made between two prospects 
(e.g. a risky and sure prospect) one of the outcomes 
is adjusted in smaller and smaller increments as pref-
erences reverse. For instance, if a participant prefers 
$50 to (100, .5) then he would be presented with a 
choice between $25 and (100, .5). If he prefers the sure 
amount this time then he would be presented a choice 
between $37.50 and (100, .5), and so forth. We note 
that, unlike single-round elicitations, the multi-round 
and bisection approaches to eliciting cash equivalents 
cannot easily be made incentive-compatible because if 
a randomly selected choice is honored for real money 
then participants can  “ game ”  the system so that a 
greater number of choices offer higher sure amounts 
(e.g., Harrison 1986). Pragmatically, however, this 
method remains popular, and there is no evidence that 
participants engage in such “ gaming ”  (Peter Wakker, 
personal communication) .

   Empirical tests indicate that the bisection method 
performs much better than direct elicitation of cash 
equivalents (Bostic et al ., 1990).  Fischer  et al . (1999)  
noted that elicitation of cash equivalents through a 
series of choices will suffer from some of the prob-
lems of direct elicitation when the goal of determining 
cash equivalents is transparent. This can be obscured 
by eliciting choices in a staggered order so that each 
successive choice entails measurement of the cash 
equivalent of a different prospect. The downside to 
this approach is that it is more time consuming than 
a more straightforward application of the bisection or 
sequential choice method that prices one prospect at
a time.  

    Modeling choice variability 
  The elicitation methods described thus far have all 

assumed a deterministic model of decision under risk. 
Naturally, one would not expect a decision maker’s 
choices in practice to be 100% consistent. At different 
moments in time, a participant may reverse prefer-
ences between prospects. Such reversals may be due to 
decision errors (i.e., carelessness or lapses in concentra-
tion) and/or transitory variations in the participant’s 
genuine underlying preferences (e.g., due to emotional, 
motivational, and cognitive states that influence risk 
preference). Reversals in preference are more likely 
to occur when the participant has difficulty distin-
guishing between prospects or has only weak prefer-
ences between them – if a decision maker is indifferent 
between prospects  g1  and  g2 , then one would expect a 
50% chance of reversing preferences on a subsequent 
choice between the prospects; the more strongly g 1  is 
preferred to  g2  the more often we expect it to be cho-
sen. Such response variability is typically substantial in 
studies of risky choice. For instance, in a survey of eight 
studies of risky choice,  Stott (2006,   Table 11.1 ) found a 
median 23% rate of reversal in preferences when par-
ticipants chose between the same pair of prospects on 
separate occasions within or across sessions. 

   There are two distinct approaches to modeling 
choice variability. The first is to assume that prefer-
ences are consistent with prospect theory but allow 
preferences consistent with that theory to vary 
from moment to moment. The  “ random preference ”  
approach assumes that choices reflect a random draw 
from a probability distribution over preferences that 
are consistent with an underlying core theory (see 
 Becker  et al ., 1963 , for an articulation of such a model 
under expected utility, and  Loomes and Sugden, 1995 ,
for a generalization). For instance, one could imple-
ment such a model using prospect theory value and 
weighting functions with variable parameters. 

   The second approach assumes a deterministic core 
theory but allows a specified error distribution to per-
turb the participant’s response (see  Becker  et al ., 1963 , 
for an application to EU). Formally, let  f ( g1 ,  g2 ) be the 
relative frequency with which prospect  g1  is selected 
over prospect  g2  in a pairwise choice. Decisions are 
assumed to be stochastically independent from one 
another and symmetric, so that f ( g1 ,  g2 )      !      1      &       f ( g2 ,  g1 ). 
Let V ( gi ) be the prospect theory value of prospect  gi . 
Most response variability models assume that  f ( g1 ,  g2 ) 
increases monotonically with  V ( g1 )      &       V (g 2 ), the differ-
ence in prospect theory value of prospects 1 and 2. 

   The choice function  f (,) can take several forms 
(see  Stott, 2006 ,  Table 11.4 ). First, it can manifest 
itself as a constant  error function in which there is a 
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fixed probability of expressing one’s true preference. 
Thus, f (g1, g2) = ε whenever V (g1) $ V (g2), ½ whenever 
V (g1) = V (g2), 1 – ε whenever V (g1) ) V (g2), where 
0 ( ε ( ½. Second, choice frequency might depend 
on the difference in prospect theory value between 
prospects, either following a  probit  transformation 
(e.g., Hey and Orme, 1994 ) or a logit  transformation 
(e.g., Carbone and Hey, 1995). Thus, for the probit 
transformation,

f g g Vg V g(  )  1 2 21
0, [( ) ( ), , ]! &Φ σ

   where  Φ [ x ,  µ ,  σ ] is the cumulative normal distribution 
with mean µ  and SD  σ  at point  x . Third, the choice 
function might follow a Luce (1959)  choice rule, in 
which choice frequency depends on the ratio of pros-
pect theory values of the prospects:   

f g g
V g

V g V g
( , )

( )
( ) ( )1 2

1

1 2
!

%

ε

ε ε
.

   In an empirical test of several stochastic models 
assuming EU, Loomes and Sugden (1998)  found that 
the random preference model tended to under-predict 
observed violations of dominance, and the error 
model assuming a probit transformation tended to 
over-predict such violations. The constant error form 
performed poorly. 

   The most comprehensive test to date of vari-
ous choice functions and prospect theory value and 
weighting functional forms was reported by  Stott
(2006) , who tested various combinations, including 
most of those described in this chapter. In his test, the 
model with the greatest explanatory power (adjusted 
for degrees of freedom) relied on a power value func-
tion (V1), a Prelec (1998)  one-parameter weighting 
function (W3), and a logit function. However, for rea-
sons already mentioned we recommend use of a two-
parameter weighting function (W2) or (W3A). 

   The aforementioned models have been used to 
model preferences among pure gain or loss prospects. 
A stochastic method for measuring loss aversion 
was introduced by  Tom  et al . (2007) . Their method 
required participants to make a series of choices as to 
whether or not to accept mixed prospects that offered 
a 50–50 chance of gaining $ x  or losing  $y in which 
x  and  y  were independently varied. These authors 
then assumed a piecewise linear value function, and 
also w% (.5)      !       w& (.5)10. They then determined the 

weight afforded the gain and loss portion of the gam-
ble through logistic regression. This method has the 
advantage of allowing separate measurement of sensi-
tivity to gains and losses (the regression coefficients), 
as well as response bias to accept or reject gambles 
(the intercept term).  

    NEUROSCIENTIFIC DATA 

   There has been substantial progress in understand-
ing the neural correlates of prospect theory since we 
last reviewed the literature ( Trepel  et al ., 2005 ). Below, 
we first outline some challenges to effective charac-
terization of the relation between neural activity and 
theoretical quantities, and then review recent work 
that has characterized the brain systems involved in 
various components of prospect theory. 

    Paradigmatic Challenges 
   Integrating theories from behavioral decision-

making research with neuroscientific evidence has 
posed a number of challenges to researchers in both 
fields.

    Developing Clean Comparisons 

  A neuroimaging study is only as good as its task 
design. In particular, in the context of behavioral deci-
sion theory it is critical that tasks cleanly manipulate 
particular theoretical quantities or components. For 
example, a study designed to examine the nature of 
probability weighting must ensure that the manipula-
tion of probability does not also affect value. Because 
it is often impossible cleanly to isolate quantities 
in this way using any specific task, another altera-
tive is to vary multiple quantities simultaneously 
and then model these manipulations parametrically. 
This allows the response to each quantity to be sepa-
rately estimated. For example, Preuschoff  et al . (2006) 
manipulated both expected reward and risk in a 
gambling task, and were able to demonstrate differ-
ent regions showing parametric responses to each 
variable.

    Isolating Task Components 

   One of the most difficult challenges of fMRI is 
the development of task paradigms and analytic 
approaches that allow isolation of specific task compo-
nents. For example, in tasks where participants make a 

NEUROSCIENTIFIC DATA

10The former assumption is a cust omary and reasonable first 
approximation, and the latter assumption accords reasonably well 
with the data when it has been carefully tested (see  Abdellaoui 
et al ., 2007c ).
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decision and then receive an outcome, it is desirable to 
be able separately to estimate the evoked response to 
the decision and to the outcome. Because the fMRI sig-
nal provides a delayed and smeared representation of 
the underlying neuronal activity, the evoked response 
lags the mental event by several seconds. A number of 
earlier studies used an approach where specific time-
points following a particular component are assigned 
to that component; however, this approach is not 
a reliable way to isolate trial components, as it will 
provide at best a weighted average of nearby events 
( Zarahn, 2000 ). It is possible to model the individual 
components using the general linear model, but the 
regressors that model the different components are 
often highly correlated, resulting in inflated vari-
ance. One solution to this problem involves the use of 
random-length intervals between trial components; 
this serves to decorrelate the model regressors for each 
task component and allow more robust estimation of 
these responses (see, for example,        Aron  et al ., 2004 ).  

    Inferring Mental States from Neural Data 

   It is very common in the neuroeconomics literature 
to infer the engagement of particular mental states 
from neuroimaging data. For example,  Greene  et al . 
(2001)  found that moral decision making for  “ personal ”
moral dilemmas was associated with greater activ-
ity in a number of regions associated with emotion 
(e.g., medial frontal gyrus) compared to  “ impersonal ”
moral dilemmas. On the basis of these results, they 
concluded that the difference between these tasks lies 
in the engagement of emotion when reasoning about 
the personal dilemmas.  Poldrack (2006)  referred to 
this approach as  “ reverse inference, ”  and showed 
that its usefulness is limited by the selectivity of the 
activation in question. That is, if the specific regions 
in question only activate for the cognitive process 
of interest, then reverse inference may be relatively 
powerful; however, there is little evidence for strong 
selectivity in current neuroimaging studies, and this 
strategy should thus be used with caution. For exam-
ple, ventral striatal activity is often taken to imply that 
the participant is experiencing reward, but activity in 
this region has also been found for aversive stimuli 
( Becerra  et al ., 2001 ) and novel non-rewarding stimuli 
( Berns  et al . 1997 ), suggesting that this reverse infer-
ence is not well founded. 

    Reference-dependence and Framing Effects 
   The neural correlates of reference-dependence in 

decision making have been examined in two studies. 

De Martino et al . (2006)  manipulated framing in a deci-
sion task in which participants chose between a sure 
outcome and a gamble after receiving an initial endow-
ment on each trial; gambles were not resolved during 
scanning. Framing was manipulated by offering par-
ticipants a choice between a sure loss and a gamble 
(e.g., lose £30 vs gamble) or a sure win and a gamble 
(e.g., keep £20 vs gamble). Participants showed the 
standard behavioral pattern of risk seeking in the loss 
frame and risk aversion in the gain frame, with sub-
stantial individual variability. Amygdala activity was 
associated with the dominant choices, with increased 
activity for sure choices in the gain frame and risky 
choices in the loss frame; the dorsal anterior cingu-
late cortex (ACC) showed an opposite pattern across 
conditions. Individual differences in behavioral fram-
ing-related bias were correlated with framing-related 
activation in orbitofrontal and medial prefrontal cor-
tex; that is, participants who showed less framing 
bias (and thus “ behaved more rationally ” ) showed 
more activity for sure choices in the gain frame and 
risky choices in the loss frame compared to the other 
two conditions. Thus, whereas amygdala showed the 
framing-related pattern across all participants on aver-
age, in the orbitofrontal cortex (OFC) this pattern was 
seen increasingly for participants who showed less of 
a behavioral framing effect. Although amygdala acti-
vation is often associated with negative outcomes, it 
has also been associated with positive outcomes (e.g., 
Ghahremani and Poldrack, unpublished work;  Weller 
et al ., 2007 ), and the correlation of amygdala activity 
with choice in the de Martino study is consistent with 
coding of value in the amygdala. 

    Windmann  et al . (2006)  compared two versions of 
the Iowa Gambling Task (IGT): a  “ standard ”  version 
(in which participants must learn to choose smaller 
constant rewards in order to avoid large punishments) 
and an “ inverted ”  version (in which participants must 
choose large constant punishments in order to obtain 
large rewards). This is similar to an inverted version 
of the IGT examined by  Bechara  et al . (2000) , who 
found that patients with ventromedial prefrontal cor-
tex (PFC) lesions were equally impaired on the stand-
ard and inverted versions of the task.  Windmann 
et al . (2006)  found that the inverted IGT was associated 
with a greater neural response to rewards compared 
to punishments in the lateral and ventromedial OFC 
when contrasted with the standard task. Interestingly, 
it appeared that some of the same lateral OFC regions 
activated for punishments vs rewards in the standard 
task were also activated for rewards vs punishments 
in the inverted task. These results suggest that the 
OFC response to outcomes is strongly modulated by 
the framing of outcomes. However, it is difficult to 
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interpret results strongly from the IGT because of its 
conflation of risk and ambiguity. Because participants 
begin the task with no knowledge about the relevant 
probabilities and must learn them over time, it is not 
possible to know whether activation in the task reflects 
differences in the learning process or differences in the 
representation of value and/or probability. 

   Together, these studies provide initial evidence for 
the neural basis of framing effects, but much more 
work is needed. In particular, because neuroimaging 
methods are correlational, it is difficult to determine 
whether these results reflect the neural causes or 
neural effects of reference-dependence. Further work 
with lesion patients should provide greater clarity on 
this issue. 

    Value Function 
   Before reviewing papers that purport to examine 

neurophysiological correlates of the prospect theory 
value function, we pause to distinguish different 
varieties of utility. Traditionally, the utility construct in 
neoclassical economics refers to a hypothetical func-
tion that cannot be directly observed mapping states 
of wealth to numbers; a decision maker whose choices 
adhere to the four axioms reviewed in the first sec-
tion of this chapter can be represented as maximizing 
expected utility. Thus, utility is a mathematical con-
struct that may or may not reflect the mental states of 
decision makers. 

  Although prospect theory also has an axiomatic 
foundation ( Wakker and Tversky, 1993 ), the model is 
motivated by behavioral phenomena, such as the psy-
chophysics of diminishing sensitivity, that are assumed 
to correspond to mental states of decision makers. 
However, it is important to distinguish different varie-
ties of utility when using tools of neuroscience to inter-
pret mental states of decision makers. In particular, 
 “ utility ”  in the context of making a decision may not 
be the same thing as “ utility ”  in the context of expe-
riencing or anticipating the receipt of an outcome. 
Economists have focused primarily on a measure 
of what Kahneman et al . (1997)  call  decision utility , 
which is the weight of potential outcomes in decisions. 
However, as these authors point out, the original con-
cepts of utility from Bentham and others focused on the 
immediate experience of pleasure and pain, which they 
refer to as  experienced utility . Others have highlighted 
the importance of the utility related to anticipating a 
positive or negative outcome (e.g., Loewenstein, 1987), 
referred to as  anticipation utility . Of particular inter-
est is the fact that these different forms of utility can 
be dissociated; for example, individuals sometimes 

make decisions that serve to decrease their experienced 
or anticipation utility. In order to be able to interpret 
clearly the results of neuroimaging studies, it is critical 
to distinguish between these different forms of utility. 

   The distinction between different forms of utility 
in behavioral decision theory parallels the distinction 
between “ wanting ”  and  “ liking ”  that has developed 
in the animal literature ( Berridge, 2007 ). A large body 
of work has shown that the neural systems involved 
in motivating aspects of reward ( “ wanting ” ) can be 
dissociated from those involved in the hedonic aspects 
of reward ( “ liking ” ). This work has largely focused on 
neurochemical dissociations. Whereas dopamine is 
often thought to be involved with pleasurable aspects 
of reward, a large body of work in rodents has shown 
that disruption of the dopamine system impairs ani-
mals ’  motivation to obtain rewards (particularly when 
effort is required), but does not impair their hedonic 
experience (as measured using conserved behavio-
ral signals of pleasure such as tongue protrusion and 
paw licking; Pecina et al ., 2006 ). The hedonic aspects 
of reward appear to be mediated by opioid systems 
in the ventral striatum and pallidum. Although the 
mapping of neurochemical systems to functional 
neuroimaging results is tricky ( Knutson and Cooper, 
2005 ), these results provide further suggestion that 
 “ utility ”  is not a unitary concept. 

   Because it is most directly relevant to the pros-
pect theory value function, we focus here on decision 
utility. This is the value signal that is most directly 
involved in making choices, particularly when there 
is no immediate outcome of the decision, as in pur-
chasing a stock or lottery ticket. It has received rela-
tively little interest in the neuroeconomics literature 
compared to experienced and anticipation utility, 
but several recent studies have examined the neural 
basis of decision utility using fMRI. Tom  et al . (2007)  
imaged participants during a gamble acceptability 
paradigm, in which participants decided whether to 
accept or reject mixed gambles offering a 50% chance 
of gain and 50% chance of loss. The size of the gain 
and loss were varied parametrically across trials, with 
gains ranging from $10 to $40 (in $2 increments) and 
losses from $5 to $20 (in $1 increments). Participants 
received an endowment in a separate session 1 week 
before scanning, in order to encourage integration of 
the endowment into their assets and prevent the risk-
seeking associated with “ house money ”  effects ( Thaler
and Johnson, 1990 ). Participants exhibited loss-averse 
decision behavior, with a median loss aversion param-
eter λ       !      1.93 (range: 0.99 to 6.75). Parametric analy-
ses examined activation in relation to gain and loss 
magnitude. A network of regions (including ventral 
and dorsal striatum, ventromedial and ventrolateral 

NEUROSCIENTIFIC DATA
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PFC, ACC, and dopaminergic midbrain regions) 
showed increasing activity as potential gain increased. 
Strikingly, no regions showed increasing activity as 
potential loss increased (even using weak thresholds 
in targeted regions including amygdala and insula). 
Instead, a number of regions showed  decreasing  activa-
tion as losses increased, and these regions overlapped 
with the regions whose activity increased for increas-
ing gains. 

  The  Tom  et al . (2007)  study further characterized 
the neural basis of loss aversion by first showing 
that a number of regions (including ventral striatum) 
showed “ neural loss aversion, ”  meaning that the 
decrease in activity for losses was steeper than the 
increase in activity for gains. Using whole-brain maps 
of these neural loss aversion parameters, they found 
that behavioral loss aversion was highly correlated 
across individuals with neural loss aversion in a 
number of regions including ventral striatum and ven-
trolateral PFC. These data are strongly consistent with 
prospect theory’s proposal of a value function with a 
steeper slope for losses than for gains. 

   Decision utility was examined by  Plassmann
et al . (2007)  using a  “ willingness-to-pay ”  (WTP) para-
digm in which participants placed bids for a number 
of ordinary food items in a Becker–DeGroot–Marschak 
(BDM) auction, which ensures that participants ’
choices are an accurate reflection of their preferences. 
 “ Free bid ”  trials, in which participants decided how 
much to bid on the item, were compared with  “ forced 
bid ”  trials, in which participants were told how much 
to bid. Activity in ventromedial and dorsolateral PFC 
was correlated with WTP in the free bid trials but not 
the forced bid trials, suggesting that these regions are 
particularly involved in coding for decision utility. 

   The neural correlates of purchasing decisions were 
also examined by  Knutson  et al . (2007) . Participants 
were presented at each trial with a product, and then 
given a price for that product and asked to indicate 
whether they would purchase the product for that 
price. Participants also provided WTP ratings after 
scanning was completed. Activity in ventral striatum 
and ventromedial PFC was greater for items that were 
purchased, whereas activity in anterior insula was 
lower for items that were purchased. A logistic regres-
sion analysis examined whether decisions could be 
better predicted by self report data or brain activity; 
although self-report data were much more predictive 
of purchasing decisions, a small (~1% of variance) 
increase in predictability was obtained when self-
report and fMRI data were combined. 

   Because of the oft-noted association of the amy-
gdala with negative emotions, it might be suspected 
that it would be involved in loss aversion in decision 

making. However, only one study has found amy-
gdala activity in relation to loss aversion.  Weber  et al . 
(2007)  examined reference-dependence using a design 
in which participants either bought or sold MP3 songs 
in a BDM auction. Comparison of selling trials versus 
buying trials showed greater activity in both amy-
gdala and dorsal striatum, whereas comparison of 
buying versus selling trials showed greater activity in 
the parahippocampal gyrus. Given the association of 
amygdala with both positive and negative outcomes, 
it is unclear whether the effect for selling versus buy-
ing reflects the disutility of losing a good, the utility 
of gaining money, or some other factor. Further, a 
recent study by  Weller  et al . (2007)  shows that patients 
with amygdala damage are actually impaired in 
making decisions about potential gains, whereas they 
are unimpaired in decisions about potential losses. 
These findings highlight the complexity of the amy-
gdala’s role in decision making, potentially suggesting 
that there are underlying factors modulating amy-
gdala activity that have yet to be discovered. 

  Together, these results begin to characterize a system 
for decision utility, with the ventromedial PFC appear-
ing as the most consistent region associated with deci-
sion utility. These results are consistent with other data 
from neurophysiology in non-human primates sug-
gesting a representation of the value of goods such as 
foods ( Padoa-Schioppa and Assad, 2006 ). However, 
the results also raise a number of questions. First, they 
cast some doubt over a simple two-system model with 
separate regions processing potential gains and losses. 
It is clear that the neural activity evoked by potential 
gains and losses is only partially overlapping with 
that evoked by actual gains and losses, but further 
work is needed to better characterize exactly how the 
nature of the task (such as the participants ’  anticipa-
tion of outcomes) changes neural activity. Second, they 
cast doubt over the common inference that amygdala 
activity is related to negative emotion, as it is clear 
that positive outcomes can also activate the amygdala. 
Further work is necessary to better understand the 
amygdala’s role in decision making. Third, they leave 
unexplained how neural activity relates to the charac-
teristic S-shaped curvature of the value function that 
contributes a tendency toward risk aversion for gains 
and risk seeking for losses. 

    Probability Weighting Distortions 
  A number of recent studies have attempted to 

identify neural correlates of distortions in probability 
weighting.  Paulus and Frank (2006)  used a certainty 
equivalent paradigm in which participants chose 
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between a gamble and a sure outcome on each trial; the 
gamble was altered in successive trials to estimate the 
certainty equivalent. Non-linearity of the probability 
weighting function was estimated using the Prelec 
(1998)  weighting function. Regression of activation 
for high- versus low-probability prospects showed 
that activity in the ACC was correlated with the non-
linearity parameter, such that participants with more 
ACC activity for high versus low prospects were asso-
ciated with more linear weighting of probabilities. 

   Non-linearities in probability weighting were also 
examined by Hsu et al . (2008) . Participants chose 
between pairs of simple gambles, which varied in 
outcome magnitude and probability; on each trial, 
each gamble was first presented individually, then 
they were presented together and the participant 
chose between them. Weighting function non-linearity 
was estimated using the Prelec (1998)  one-parameter 
weighting function (W3B). In order to isolate regions 
exhibiting non-linear responses with probability, sepa-
rate regressors were created which modeled a linear 
response with  p  and a deflection from that linear func-
tion which represents non-linear effects. Significant 
correlations with both linear and non-linear regres-
sors were found in several regions, including the dor-
sal striatum. Further analysis of individual differences 
showed a significant correlation between behavioral 
non-linearity and non-linearity of striatal response 
across participants. 

   Probability weighting distortion for aversive out-
comes was examined by Berns et al . (2007) . In a first 
phase, participants passively viewed prospects which 
specified the magnitude and probability of an electric 
shock. In a second phase, participants chose between 
pairs of lotteries. A quantity was estimated ( “ neu-
rological probability response ratio, ”  NPRR) which 
indexed the response to a lottery with probability 
less than one to a lottery with a probability of one 
(normalized by respect to the response to probability 
1/3, which is the sampled point nearest to the likely 
intersection of the non-linear weighting function and 
linear weighting function – see Figure 11.3e). For the 
passive phase, NPRR was significantly non-linear 
for most regions examined, including regions in the 
dorsal striatum, prefrontal cortex, insula, and ACC. 
Activity from the passive phase was also used to pre-
dict choices during the choice phase; the fMRI signals 
provided significant predictive power, particularly for 
lotteries that were near the indifference point. Thus, 
there appears to be fairly wide-scale overweighting of 
low-probability aversive events in a number of brain 
regions. 

  Although the results of these studies are prelimi-
nary and not completely consistent, they suggest that 

it should be possible to identify the neural correlates 
of probability weighting distortions. It will be impor-
tant to determine which regions are causally involved 
in these distortions (as opposed to simply reflect-
ing the distortions) by testing participants with brain 
lesions or disorders. If non-linearities are the product 
of a specific brain system, then it should be possible 
to find participants whose choices are rendered linear 
with probability following specific lesions, similar to 
findings that VMPFC lesions result in more advanta-
geous behavior in risky choice ( Shiv et al ., 2005 ).

    CONCLUSIONS AND FUTURE 
DIRECTIONS

   The field of neuroeconomics is providing a rapidly 
increasing amount of data regarding the phenomena 
that lie at the heart of prospect theory, such as framing 
effects and loss aversion. But we might ask: what have 
these data told us about prospect theory? It is clear 
that the demonstrations of neural correlates of several 
of the fundamental behavioral phenomena underlying 
prospect theory (loss aversion, framing effects, and 
probability weighting distortions) provide strong evi-
dence to even the most entrenched rational choice the-
orists that these “ anomalies ”  are real. The data have 
also started to provide more direct evidence regarding 
specific claims of the theory. 

   Our review of behavioral and neuroscience work 
on prospect theory and the neuroscience of behavioral 
decision making suggests a number of points of cau-
tion for future studies of decision making in the brain: 

    1.     It is critical to distinguish between the different 
varieties of utility in designing and interpreting 
neuroscience studies. Studies in which participants 
make a decision and then receive an immediate 
outcome may be unable to disentangle the 
complex combination of decision, anticipation, and 
experienced utilities that are likely to be in play 
in such a task. 

    2.     Under prospect theory, risk attitudes toward 
different kinds of prospects are interpreted in 
different ways. Risk aversion for mixed gambles 
is attributed to loss aversion; the fourfold pattern 
of risk attitudes for pure gain or loss gambles 
is attributed to diminishing sensitivity both to 
money (as reflected by curvature of the value 
function) and probability (as reflected by the 
inverse S-shaped weighting function). It is easy 
to conflate these factors empirically; for instance, 
if one assumes a single-parameter weighting 
function that only allows variation in curvature 
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but not elevation, then variations in observed 
risk attitudes across all probability levels may be 
misattributed to curvature of the value function.  

    3.     Reverse inference (i.e., the inference of mental 
states from brain-imaging data) should be used 
with extreme care. As a means for generating 
hypotheses it can be very useful, but its severe 
limitations should be recognized. 

    Challenges for the Future 
  As neuroeconomics charges forward, we see a 

number of important challenges for our understand-
ing of the neurobiology of prospect theory. First, it 
is critical that neuroimaging studies are integrated 
with studies of neuropsychological patients in order 
to determine not just which regions are correlated 
with particular theoretical phenomena, but also 
whether those regions are necessary for the presence 
of the phenomena. A nice example of this combined 
approach was seen in the study of ambiguity aversion 
by  Hsu  et al . (2005) . It is likely that many of the regions 
whose activity is correlated with theoretical quantities 
(e.g., curvature of weighting function) may be effects 
rather than causes of the behavioral phenomena. 

  Another challenge comes in understanding the 
function of complex neural structures, such as the 
ventral striatum and amygdala, in decision making. 
Each of these regions is physiologically heterogene-
ous, but the resolution of current imaging techniques 
leads them to be treated as singular entities. In the 
amygdala, the heterogeneous nuclei are large enough 
that they could potentially be differentiated using 
currently available neuroimaging methods (e.g.,  Etkin
et al ., 2004 ). The neurobiological heterogeneity of the 
ventral striatum is more difficult to address using 
current neuroimaging methods; there are both struc-
tural features that are not currently visible to human 
neuroimaging (e.g., accumbens core vs. shell) as well 
as substantial cellular heterogeneity (e.g., striosomes 
vs. matrix, direct vs. indirect pathway) at an even 
finer grain. Finally, there is still substantial contro-
versy over the degree to which imaging signals in the 
ventral striatum reflect dopamine release as opposed 
to excitatory inputs or interneuron activity. It is clear 
that imaging signals in the ventral striatum often 
exhibit activity that parallels the known patterns of 
dopamine neuron firing (in particular, prediction 
error signals), and dopamine has strong vascular as 
well as neuronal effects, so it is likely that it exerts 
powerful effects on imaging signals, but it is not cur-
rently known how to disentangle these effects from 
local neuronal effects. 

   Finally, one critical extension of present work will 
be to relate it to other work in the domain of cogni-
tive control. The role of frontal and basal ganglia 
regions in the control of cognitive processes (includ-
ing inhibition, selection, and interference resolution) 
is becoming increasingly well specified, but how 
these processes relate to decision making remains 
unknown. Given the availability of the prefrontal 
cortex to both neuroimaging and disruption by tran-
scranial magnetic stimulation (TMS), there is hope 
that an understanding of the relation between cog-
nitive control and decision making will be relatively 
tractable in comparison to subcortical regions.   

   APPENDIX 

    Formal Presentation of Cumulative 
Prospect Theory (adapted from  Tversky 
and Kahneman, 1992 ) 

   Let  S  be the set whose elements are interpreted as 
states of the world, with subsets of S  called  events . 
Thus, S  is the certain event and  φ  is the null event. 
A weighting function  W  (on  S ), also called a  capacity , 
is a mapping that assigns to each event in S  a number 
between 0 and 1 such that W ( φ )      !      0,  W ( S )      !      1, and 
W ( A )      '       W ( B ) if and only if  A   !   B . 

   Let  X  be a set of consequences, also called  outcomes , 
that also includes a neutral outcome 0. An uncertain 
prospect  f  is a function from  S  into  X  that assigns to 
each event Ai  a consequence  xi . Assume that the con-
sequences are ordered by magnitude so that  xi       )                 xj
if i       )       j . Cumulative prospect theory separates pros-
pects into a positive part, f % , that includes all  xi       )        0, 
and a negative part, f & , that includes all  xi       $        0. CPT 
assumes a strictly increasing value function  v ( x ) satis-
fying v ( x0 )      !       v (0)      !      0. 

   CPT assigns to each prospect  f  a number  V (  f  ) 
such that f !  g  if and only if  V (  f  )      '       V ( g ). Consider a 
prospect  f       !      ( xi ,  Ai ),  &m       (       i   (           n , in which positive 
(negative) subscripts refer to positive (negative) out-
comes and decision weights π π π% % % %!( ) ( , , )f n0 …
and π π π& &

&
& &!( ) ( , , )f m … 0     for gains and losses, res-

pectively. The value  V  of the prospect is given by 

V f V f V f( ) ( ) ( )! %% &

   where 

V f v x V f v xi i
i

n

i i
i m

( ) ( ), ( ) ( )% %

!

& &

!&

! !π π
1

0

∑ ∑and
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   where  π%  and  π&  are defined as follows: 

π πn n m mW A W A% %
&
& &

&! !( ), ( )

πi i n i nW A A W A A
i n

% % %
%! &

( ( &
( ) ( )," " " "… …1
0 1for

πi m i m iW A A W A A
m i

& &
&

&
& &! &

& ( (
( ) ( )," " " "… … 1
1 0for .
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