
Smart Cloud Federation Simulations with CloudSim

Gaetano F. Anastasi
Information Science and

Technologies Institute
CNR, Pisa, Italy

g.anastasi@isti.cnr.it

Emanuele Carlini
Information Science and

Technologies Institute
CNR, Pisa, Italy

emanuele.carlini@isti.cnr.it

Patrizio Dazzi
Information Science and

Technologies Institute
CNR, Pisa, Italy

p.dazzi@isti.cnr.it

ABSTRACT
In the last few years the broad diffusion of Cloud Com-
puting has encouraged the proliferation of cloud computing
providers. However, providers often propose their services
using proprietary management software, interfaces and vir-
tualization technologies. This strongly hinders the applica-
tions interoperability and migration across providers bound-
aries. Organizing providers in federations seems promising
for addressing such issues, but it introduces other challenges
to be faced, often requiring innovative approaches. Unfortu-
nately, the evaluation of new solutions in a repeatable man-
ner and under several configurations is a hard task to achieve
using real Clouds platforms. For these reasons we propose
SmartFed, a simulator for cloud federations that is able to
model the richness typical of an environment with multiple
cloud providers. We show the capability of SmartFed by
simulating a sample mapping process for assigning applica-
tions to providers.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Domain-specific architec-
tures

General Terms
Design

Keywords
Cloud Computing, Cloud Federation, Simulator

1. INTRODUCTION
Cloud computing is an infrastructural paradigm that elim-

inates the need for maintaining and managing expensive
computing hardware, and represents a concrete instantia-
tion of the long-held dream of computing as a utility. Cloud
computing allows the exploitation of resources as services
according to a pay-per-use paradigm that relies on the exis-
tence of a Service Level Agreement (SLA) between the user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ORMACloud’13, June 17, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1982-9/13/06 ...$15.00.

and the provider, and suitable for expressing Quality of Ser-
vice (QoS) terms that needs to be accounted, monitored and
enforced. Currently, almost all IT behemoths offer their own
cloud computing solution: Amazon1, Google2, Microsoft3,
to cite only the most popular. Most of the existing solutions
come with their own management software and proprietary
APIs, forcing users to operate according to specific commu-
nication protocols and virtualization technologies and, as a
consequence, limiting the portability of the solutions. This
phenomenon is known as vendor lock-in and strongly lim-
its the migration of application and services across provider
boundaries. For overcoming this issue, several standards –
e.g. Open Cloud Computing Interface (OCCI) [2], Open Vir-
tualization Format (OVF) [1] – have been recently proposed
to foster the cooperation across different Cloud platforms
and infrastructures. Unfortunately, these standards cover
only specific aspects of the Cloud management stack, and
none of them is yet universally adopted by cloud providers.

On the other hand, Clouds Federation [8] is one of the
most promising approach both for abstracting the hetero-
geneity of different technologies adopted by different providers
and for integrating multiple resources owned by different
providers in a unified platform. Such approach has been
adopted in Contrail4, an ongoing EU project where we are
conceiving and developing the federation-support, i.e. the
components and the services supporting the cloud federa-
tion. In this paper, the terms federation and federation-
support will be used interchangeably, by referring to the
Contrail approach.

The federation role is not just to perform interface adap-
tation towards providers, instead it can be considered as a
bridge linking cloud users and cloud providers, acting as
a mediator between them. For instance, the federation-
support manages user identities for accessing to different
cloud providers and reports information about the usage of
resources (i.e. accounting, billing). Also, users can submit
applications and negotiate SLAs by exploiting at the same
time and in a transparent manner all the federated providers.

By focusing on the application submission, the main task
of the federation is to select the proper Cloud providers to
run submitted applications. The input to the federation is
composed by applications, i.e. a set of interconnected ap-
pliances, and SLAs providing the user requirements on a
per-appliance basis. With the term appliance we identify a

1http://aws.amazon.com/
2http://code.google.com/appengine/
3http://www.microsoft.com/windowsazure/
4http://www.contrail-project.eu/

set of Virtual Machines (VMs) strictly cooperating to real-
ize the fundamental block of an application (like a pool of
web servers or the combination of firewall and database).
The SLA associated to an appliance defines a set of re-
quirements that must be addressed and enforced in order
to properly execute the appliances. Upon the reception of
the pairs application-SLA, the federation selects the proper
Cloud providers to run the appliances according to the user
requirements, the characteristics of the appliances and the
related SLA. In order to effectively achieve this goal the fed-
eration exploits both static (e.g. cost-models) and dynamic
information regarding the resources of Cloud providers.

Finding the best approach for resources selection and their
allocation for running applications is a difficult task. Indeed,
often it does not exist the “best” approach in general, but
instead a most suitable approach given certain resources and
applications. This implies the need of a careful design and a
proper contextualization of either existing or new solutions
to the considered environment. Besides the design, devel-
opment and contextualization phase, there is the need of an
evaluation aimed at testing different solutions on different
target environment. Unfortunately, the evaluation can be
both expensive and complex in a real federation of Clouds.
A suitable solution can be represented by simulation tools,
which offers the possibility of evaluating hypothesis prior to
software development in a reproducible environment.

This paper presents SmartFed, a simulator specifically tai-
lored for cloud federations built on top of CloudSim [7].
SmartFed employs a collection of software entities, which
programmers can exploit to properly model a federation of
Clouds. The whole framework has been designed for: (a)
easing the testing of different Cloud configurations in repeat-
able and controllable environment, free of cost; (b) facilitat-
ing the finding of performance bottlenecks of the employed
solutions before implementing them.

The main contribution of this paper is the presentation
of our simulator and the associated framework. For this
purpose, a federation of Clouds has been also modeled and
presented. Moreover, we performed an initial analysis of the
simulator by using a sample scheduling algorithm to allocate
a predefined application on multiple datacenters.

The paper is organized as follows. In Section 2 we present
the model of cloud applications and resources considered in
SmartFed. Section 3 describes the architecture of SmartFed,
including the relationship with CloudSim. A sample re-
source allocation strategy is presented in Section 4 for show-
ing the viability of the proposed simulation solution. Finally,
Section 5 presents the related work and Section 6 draws the
conclusions.

2. MODELING FEDERATIONS
In this section we present our proposal for modeling a

cloud federation. For the sake of clarity, the discussion is
divided in the following sections, which broadly represents
the components of SmartFed:

• Application Model

• Resource Model

• Application Queue Model

• Resource Monitoring

• Resource Allocation Model

The first three components represent the main entities of
the simulator: what to execute, where to execute, when the
information needed to decide about the execution is avail-
able. The“Resource Monitoring”component aims to express
the quantity and the quality of the information available for
the allocation choices decision. The “Resource Allocation
Model” component expresses how resources are associated
with cloud applications, namely, it models the allocation
strategies in the shape of mapping algorithms.

2.1 Application Model
Applications can be submitted to Clouds following very

different approaches that are usually organized in three lev-
els: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
Infrastructure-as-a-Service (IaaS). In fact, besides this com-
mon classification, each cloud provider can in principle sup-
port a different degree of expressiveness for the application
description.

A promising proposal for a unifying standard description
is represented by OVF, that describes applications at IaaS
level using a configurable XML structure organized in dif-
ferent sections. Simplifying, OVF permits to describe ap-
plications as a hierarchical set of nodes, each one composed
by a set of virtual machines inter-connected by virtual net-
works. Both machines and networks can be characterized
by resources’ requirements.

In order to provide an expressiveness similar to the one
represented by OVF, in our model each cloud application
submitted to the federation is represented by an undirected
graph 〈 GN , EM 〉, where G represents the set of N ver-
tices and E represents the set of M edges connecting the
vertices. Each vertex gi ∈ G embodies an appliance, that
can be composed by multiple correlated VMs (vm1..k ∈ gi),
each one potentially providing different services, e.g. one
VM provides a firewall and another one provides a back-
end database. Each edge ei,j ∈ E represents an undirected
communication path connecting vertices gi and gj .

Both vertices and edges are characterized by a set of func-
tional (e.g. amount of available memory) and non-functional
(e.g. reliability degree) requirements that must be addressed
in order to run the application. In particular, for each
vmi ∈ gi, in our model we limit the functional requirements
reqi presented in Table 1. The first column reports the fea-
ture, whilst the second column indicates the condition for
the requirement to be satisfied, with respect to the resource
capacity. For instance, if the number of cores required by
the VM image is equal or less to the number of core provided
by the host machine then the requirement is satisfied. As a
consequence the requirements associated to a vertex gi con-
sist in the sum of the requirements of the VMs composing
it.

Table 1: Functional requirements of a VM image

VM functional features satisfied if:

CPU Type Exact match
CPU Frequency Equal or less
Number of cores Equal or less

RAM size Equal or less

Each vertex is also characterized by non-functional re-
quirements slai that are expressed as a combination of SLA
terms. In our model, we consider the SLA terms indicated in

Table 2, where for each SLA term indicated in first column
is also specified the satisfactory condition in the second col-
umn. For instance, if the Resource Price (the price a user
accepts to pay for using that resource) is equal to 3$ per-
hour then the SLA term is satisfied if the price made by that
provider is equal or less to $3 per-hour.

Regarding the other terms of Table 2, the Reliability

Degree is defined as the probability that a certain resource
will be up and running in a defined portion of time t, e.g. a
resource that has been working properly for 362 days of the
last year has a year-reliability around the 99%. Finally, the
Elasticity Range is defined as the range of instances asso-
ciated to a VM during the application life-cycle, e.g. a VM
that requires an elasticity range from 4 to 10 will be allowed
to vary the number of its instances in the correspondent
range of values.

Table 2: SLA terms
SLA terms satisfied if:

Resource price Equal or less
Reliability degree Equal or greater
Elasticity range In the range

An edge ei,j is an interconnection link connecting vertex
gi to vertex gj . The edge ei,i with i ∈ N can be also defined.
In this case, it represents the characterization of the network
connecting VMs of the same vertex. An edge is character-
ized by some non-functional requirements slai,j , that are the
same defined in Table 2 and some functional requirements
nreqi,j that are indicated in Table 3.

Table 3: Network features
Network features satisfied if:

Bandwidth Equal or less
Latency Equal or greater

Security capability Exact match

The first column of Table 3 reports the features, whilst
the second column indicates the condition for the require-
ment to be satisfied, with respect to the link capacity. For
instance, if the bandwidth required by the application link is
equal or less to the bandwidth of the provider link, then the
requirement is satisfied. Please note that the Security ca-

pability term indicates if and how the network link sup-
ports mechanisms for securing the connection, e.g. the RSA
algorithm.

2.2 Resource Model
As it happens for Applications, Cloud Resources can be

seen at different levels of abstraction depending on the ap-
proach followed, e.g. the amount of spreadsheets that can be
stored is a resource bound described at the level of SaaS, the
number of rows that can be stored in a database is a typical
PaaS level resource description, whereas the total size of a
volume expressed in Terabytes is an information at the IaaS
level.

In this work we concentrate on modeling resources at the
IaaS level. Each IaaS provider is modeled with a datacenter
ci. We assume that each datacenter is composed by a set of
hosts, that can run one or more virtual machines depend-
ing on their resources availability. The resources of each

datacenter are interconnected by a network characterized
by a specific set of features. Depending on its performance
capabilities each datacenter can run a different number of
applications, i.e. set of virtual machines. In our model we
assume that the allocation units associated to a datacenter
are defined in terms of virtual machines slots. The features
of each slot as well as their number can vary datacenter by
datacenter. More formally, a datacenter is defined as:

ci = {c feati, c avai, c nfeati,i, c slai}

where c feati indicates the functional features (listed in
Table 1) of the VM slots provided by the datacenter ci. The
c avai represents the number of VM slots for the datacen-
ter ci. As an example, a datacenter physically composed
of 8 nodes having a quad-core i7 and 8 GBytes of RAM
could provide 16 VM slots characterized by a dual-core i7
with 4 GBytes of RAM. The symbol c nfeati,i represents the
functional features of the network interconnecting two ver-
tices. If the two input indexes are the same, the functional
features are related to the internal interconnection network
of the datacenter. Such features are defined as in Table 3.
Last, c slai is the non-functional features provided by the
datacenter ci. In this case, the considered features are only
Resource Price and Reliability Degree, as the Elastic-

ity Range term is meaningless for datacenters.
We assume datacenters to be connected to each others

with internet-based network connections. Clearly, not all
the network interconnection links provide the same features,
e.g. bandwidth, latency, etc. Moreover, the actual usage of
a link affects its performances. The usage of a link can vary
either in a predictable way or in a completely unforeseeable
manner depending on several factors. In order to model this
complexity, we introduced an Internet Estimator entity that
estimates the properties of the network link interconnecting
two datacenters. Such properties can be represented with
the symbols c nfeati,j and c slai,j , indicating the functional
and non-functional requirements of the network link inter-
connecting datacenter ci and datacenter cj .

2.3 Application Queue Model
To be executed in one or more Clouds, each application

needs to be associated with a set of proper resources. To
find the most appropriated resources, the allocation algo-
rithm shall consider the requirements of the application and
evaluate the best assignments depending on the actual re-
sources availability. Consequently, the time at which the ap-
plication is submitted to the system is a relevant element for
evaluating the ability of the allocation algorithm to map the
applications to resources. Straightforwardly, an algorithm
having a complete knowledge about all the application that
will be submitted to the system can take better decisions
than an algorithms that has only a partial view on the next
applications that will be provided in input to the system.

The aim of the Application Queue Model is to define both
the inter-arrival behavior followed by input applications and
the information provided to the allocation algorithm regard-
ing the application in input to the system.

2.4 Resource Monitoring
If the Application Queue Model defines the amount of in-

formation available to the allocation algorithm about the
input applications, than similarly the monitoring subsystem
defines the amount and the quality of information about the

resources availability of the federated cloud providers. The
“idea behind” is to have a way to model both the frequency
at which the information is updated and the way it is ag-
gregated, thus simplifying its management and reducing the
amount of data to transfer from the providers to the fed-
eration. Our model allows to define the frequency of the
updates and the behavior of data aggregators.

2.5 Resource Allocation Model
The Cloud Federation is associated to a set of providers

and a set of applications. In this context, an allocation strat-
egy defines a mapping between the resources belonging to
federated Clouds and the applications submitted to the Fed-
eration.

In our model, we do not require that each application runs
as a whole in the same datacenter, rather each appliance
gi ∈ a can be executed by different datacenters. In other
words, we do not consider the suitability of a Cloud to run
an entire application but the ability to run an appliance, in
isolation with respect to the other appliances. The analysis
of appliances in isolation allows to reduce the complexity re-
quired to compute a suitable mapping that otherwise would
require, in the worst case, an exponential number of com-
parisons between the fractions of the application and the
available resources. This reduces the amount of time for
computing the allocation of resources to appliances, gaining
in terms of scalability.

The mapping can be defined as a function map(a) = Y
that receives in input an application a and returns the ma-
trix

Y =

c1,1 · · · c1,P
...

. . .
...

cN,1 · · · cN,P

where the element ci,j represents the j-th datacenter suit-

able for running the i-th appliance of a. Thus, each row
vector can be seen as the ranked list of datacenters (with
P ≤ K) suitable for running that appliance.

In order to compute this mapping, the federation needs
information about the Cloud resources as well as about the
network infrastructure interconnecting them. This informa-
tion is composed by a “static” part that rarely changes (e.g.
CPU type, installed memory) and a “dynamic” part that
changes frequently (e.g. available memory, available net-
work bandwidth). Static information can be gathered very
often with low overheads and thus the probability of being
up-to-date is very high. Dynamically changing information
is instead gathered with an higher sampling time for not in-
curring in high overheads and thus it is available with some
delay. One of the consequences is that a mapping computed
by the federation could result valid on the basis of the infor-
mation shared by the federation without being valid when
actually enacted in the application deployment phase. A
cloud federation simulator should provide the necessary ab-
stractions to model these aspects.

3. SIMULATOR ARCHITECTURE
In this section we present the architecture of SmartFed.

It extends and reuses several facilities of the CloudSim Sim-
ulator, which is described in more detail in the following.
Then, Section 3.2 enters into the details of our implementa-
tion, discussing how all its components collaborate together
to simulate cloud federations.

3.1 CloudSim Simulator
The CloudSim framework is one of the most known sim-

ulator for Cloud Computing environments. It is a discrete
event simulator initially conceived in 2009 and it has been
continuously extended with additional modules and features
across the years, proven to be well-conceived for reusing and
flexibility. For this main reason it has been chosen in this
work for simulating the Contrail cloud federation model.

The CloudSim architecture is structured in three main lay-
ers. The bottom layer is the simulation engine, that supports
the core functionalities of the simulation, such as the queu-
ing and processing of events, the creation of software entities
and the clock simulation management. The CloudSim layer,
that stands in the middle, provides support for the model-
ing and the management of cloud datacenters, allowing the
simulation of VM provisioning, application execution man-
agement and providers monitoring. The User Code layer is
the top-most one and provides support for high-level mod-
eling of application workloads and Cloud resources. More-
over, it provides tenants for implementing scheduling poli-
cies through the broker entities.

For the purpose of modeling the Contrail Federation, the
Broker is the most interesting one to extend. In fact, the
broker’s task is to assign virtual machines to cloud providers,
referred to as Datacenter in CloudSim. This task is one of
the key roles of a Federation, along with all the decisions that
involves the run-time support, such as elasticity or live mi-
gration. These datacenters are taken at federation level and
should be implemented at the top-most level of CloudSim.

The relevant point for simulating Cloud Federations is a
proper representation of applications. Plain CloudSim es-
sentially represents all the input applications as entities (re-
ferred to as CloudLet) that are independent one from each
others. This hampers the task of properly representing the
relationships among VMs composing complex Cloud appli-
cations, which happen to have peculiar requirements related
to links interconnecting VMs that can also be hierarchically
organized, as we described in Section 2.

These are the main differences that distinguish the Con-
trail cloud federation model from the federation model em-
bedded in CloudSim. In fact, federated cloud datacenters
are seen as peers in CloudSim and thus they can cooperate
for implementing policies like compensation or inter-cloud
load balancing. It is clear that such model does not fit the
Contrail one, as each Contrail Cloud is an autonomous sys-
tem that competes with the others belonging to the same
Cloud Federation.

3.2 Federation Simulator
This section describes the entities composing SmartFed

(see Figure 1). The entities are reported by specifying their
role and the programming model that should be followed to
implement peculiar aspects of cloud federations. The rest of
this section is organized in five subsections devoted to de-
scribing the entities supporting, respectively, the implemen-
tation of Cloud Applications, the Application Queue, the
Internet Estimator, the Monitoring Hub and the Allocator.

3.2.1 Application
Each cloud application is modeled as a graph, according

to the model described in Section 2. Each vertex is repre-
sented by an ApplicationVertex (AV) entity consisting in a
set of Cloudlets (CLs). Each AV is also associated with a set

SmartFed

CloudSim

StorageMonitoring

Reputation

Federation
Datacenter

SLA

Application

Application
Vertex

Application
Edge

Queue

Allocator

allocate

<<use>>

<<use>>
<<use>><<use>> <<use>><<use>>

<<use>> <<use>>

<<use>>

<<use>> <<use>>

BrokerDatacenter CloudLet

Figure 1: Main entities of SmartFed

of homogeneous VM, one for each Cloudlet. Each edge of
the graph is represented by an ApplicationEdge (AE) entity
that defines the requirements associated with the commu-
nication link interconnecting the CLs, more in detail in our
model we consider bandwidth, latency and channel security
requirements. As an example, let us consider an applica-
tion where {CL1, CL2} ∈ AV1 and {CL3} ∈ AV2, where
AV1 and AV2 are connected through AE1. This indicates
that the application requires CL1 and CL2 to be connected
with CL3 with a link satisfying the characteristics defined
in AE1.

3.2.2 Application Queue
In SmartFed, the arrival of the applications into the Fed-

eration can be properly defined and tuned. In particular,
this can be done exploiting the Application Queue entity.
It provides the support for defining the inter-arrival of ap-
plications into the Federation. From an operative point of
view, the programmer has to specify the arrival time of each
application in the system either choosing a standard distri-
bution among the ones available in the simulator (e.g. the
α−distribution), or to directly provide the logic for a cus-
tom one. This last possibility can be exploited by simply
implementing a method that takes in input all the Applica-
tions to consider during the simulation and returns back for
each of them a timestamp describing the arrival time of the
Application in the Federation.

3.2.3 Internet Estimator
As we anticipated in Section 2, SmartFed provides a sup-

port for modeling the network bandwidth across datacen-
ters. The Internet Estimator provides this support by de-
scribing the links between federation datacenters, associat-
ing for each link the corresponding latency, bandwidth and
security mechanisms.

The Internet Estimator derives from the CloudSim’s Net-
workTopology, but it adds the ability of pre-reservation of
links during the mapping phase. Basically, it provides the
primitives for: (i) defining the links inter-connecting couples
of datacenters, (ii) getting information about links, and (iii)
reserving and releasing bandwidth. It is worth to point out
that our Internet Estimator assumes that the link connect-
ing two datacenters is not influenced by other allocations
not explicitly involving that link, i.e. we assume that each
link is dedicated.

3.2.4 Monitoring Hub
The ability of modeling the amount and the quality of

the information available for the federation about datacen-
ters’ resources is particularly useful to model this kind of
systems. Cloud federations are expected to deal with no-
table amounts of highly distributed resources, organized in
several different datacenters. It is not realistic to assume
the federation to have all the up-to-date information about
the actual usage of cloud providers. In fact, in order to
model realistic simulations it is fundamental to have the
possibility to specify the frequency (w.r.t. the time units) of
polling requests issued by federation to retrieve information
about cloud providers. Moreover, it is also useful a support
that allows to specify the amount of past usage information
about datacenters at federation side. The SmartFed exten-
sion allows programmers to characterize this information by
customizing the Monitoring Hub entity, that is devoted to
this end.

3.2.5 Allocator
The central entity of our CloudSim extension is the Al-

locator. By customizing it, the programmer can implement
the allocation algorithm, i.e. the functional code that deter-
mines the associations between applications and datacen-
ters. In literature there exist several different algorithms
that have been proposed to this end. Almost all of them
consider the features associated to applications and the dat-
acenters (and their resources). Finer solutions also consider
the networks interconnecting datacenters to optimize the al-
locations also considering the communications among the
components of an application (in our case expressed by the
edge of the graph). Some solutions also consider long-term
information about datacenters, e.g. their workload or their
reputation.

All these information are available to programmers ex-
ploiting our CloudSim extension. Indeed, the Allocator en-
tity can access the Application Queue, the Internet Estima-
tor and the Monitoring Hub. It also provide a persistent
storage in which can be stored long-term information about
datacenters.

4. HANDS ON SMARTFED
The purpose of this section is to present some preliminary

results obtained with the proposed simulator. We generate
different simulation scenarios differentiated by the following
elements: (i) number of CLs for each application; (ii) num-
ber of datacenters; (iii) distribution of hosts in datacenters;
(iv) resource allocation algorithm.

We consider a 3-tier web application composed by: (i) a
web front-end tier for accessing the application; (ii) an appli-
cation tier running the business logic; (iii) a persistence tier
handling the storage. Such application, depicted in Figure 3,
is modeled as a graph 〈 G3, E2 〉 (see Section 2.1).

Each gi is composed by a set of homogeneous VMs with
the same hardware requirements, as defined in Table 1, whereas
each ei,j has associated the set of network requirements de-
fined in Table 3. The particular values used in these ex-
periments are also depicted in Figure 3. For the sake of
simplicity, we do not consider SLA terms in this use case.

First, the number of CLs is varied for the entire applica-
tion, taking the following values: 10, 100 and 1000. Without
loss of generality, we assume that each CL runs on a single
VM, thus the two entities correspond one each other. The

 0.1

 1

 10

 100

 10 100 1000

Ti
m

e
 (

m
ill

is
e
co

n
d
s)

Number of VMs per application

plain, Normal
graph-aware, Normal

plain, Uniform
graph-aware, Uniform

 0.1

 1

 10

 100

 10 100 1000

Ti
m

e
 (

m
ill

is
e
co

n
d
s)

Number of VMs per application

plain, Normal
graph-aware, Normal

plain, Uniform
graph-aware, Uniform

Figure 2: Mapping time obtained with D = 10 (left) and D = 100 (right)

Web Frontend
(Presentation tier)

RAM

2 Ghz
CPU type

2

x64

2 GB

CPU Freq.
Cores

ApplicationServer
(Business logic tier)

Database
(Persistency tier)

1024 Kb/s
Security

1000 msLatency

SSL
Bandwidth

RAM

3 Ghz
CPU type

4

x64

16 GB

CPU Freq.
Cores

512 Kb/s
Security

1000 msLatency

SSL
Bandwidth

RAM

2 Ghz
CPU type

2

x64

4 GB

CPU Freq.
Cores

Figure 3: The 3-tier application used in the simula-
tion

number of VMs per tier is assigned so that the web front-
end and the database have each 20% of the VMs, and the
application server has the remaining 60%.

Second, the federation manages a set of D datacenters
each one corresponding to a cloud (DCs), that can be seen
as collections of hosts. In these experiments, D assumes the
following values: 10, 100. The total number of hosts (H)
assigned to DCs is roughly a 4x the number of VMs in the
application.

Third, the number of hosts in a DC may impact on the
mapping algorithm. As an example, consider the case in
which the first datacenter has a number of hosts that is
sufficiently large for containing all the VMs. In this case no
optimization can be enacted for a greedy approach, as all
the variants of this algorithm will map the application on
that datacenter. For this reason, we employ two strategies
for assigning hosts to DCs. In the first strategy, DCs have
an uniform number of hosts, i.e. every DC has dH

D
e hosts.

In the other strategy we distributes hosts according to a

normal distribution N (m,σ2), with m = D/2 and σ2 =
D/4, forcing DCs to have at least one host.

Fourth, the algorithm used for testing the simulator fol-
lows a greedy strategy but we implemented two versions of
it, denoted as plain and graph-aware. In the plain version,
a DC is selected by checking whether it can run the VM
and if the network requirement can be met. This process
is repeated for each VM, regardless of the previous assign-
ments. Such approach is the one commonly exploited by
CloudSim. On the other hand, the graph-aware version ex-
ploits the application as a graph. Indeed, it tries to allocate
VMs belonging to the same type (and hence, the same tier
of the application) in a DC. If the DC cannot manage all the
VMs, the algorithm tries to place all the remaining VM in
an another DC, and so on until the tier is not fully allocated.
The algorithm terminates successfully when all the VMs are
assigned and running.

Some simulations have been run on a machine equipped
with Java 7, 16GB of RAM, an Intel i5-2550 quad core @3,30
Ghz and the mapping times obtained with SmartFed have
been measured. Figure 2 shows (in log-scale) the mapping
time as a function of the number of VMs. In particular, the
left graph of Figure 2 shows results obtained when D = 10,
whilst the right graph shows results obtained when D = 100.
Results are plotted for the combinations of the discussed
configurations regarding the mapping algorithm and the dis-
tribution of hosts. It can be noticed that the mapping time
slightly increases with more DCs but results are of the same
magnitude order.

In general, the graph-aware algorithm obtains lower map-
ping times with respect to the plain one, especially with
D = 10. In fact, the graph-aware version tries, once that a
suitable DC has been found, to map all the VMs of a vertex
in the same DC, avoiding to tries on unfitting DCs that may
be in the beginning of the ranked list. Figure 2 also high-
lights that the distribution strategy of hosts to DCs affects
the mapping time. By using the uniform distribution, each
DC have a fair amounts of hosts, which prevents them to be
filled soon. On the other side, by using the normal distribu-
tion, only few DCs have an high amount of hosts, and the
other DCs are filled very early.

Such results show that SmartFed can easily support sim-
ulation and confrontation of different algorithms and config-
urations in the context of cloud federations.

5. RELATED WORK
This section briefly analyzes related work in the fields re-

alated to this paper, being cloud federation, resource allo-
cation and cloud simulation.

As already discussed in Section 1, our approach to cloud
federation is the Contrail one. Other works exist that aim
at integrating multiple and heterogeneous clouds. For in-
stance, InterCloud [6] is a federated cloud computing envi-
ronment that aims at provisioning application in a scalable
computing environment, achieving QoS under variable work-
load, resource and network conditions. This work exploits
a central coordinator that exposes basic functionalities for
resource management such as scheduling, allocation, work-
load and performance models. In the Reservoir project [13],
the authors propose an architecture for an open federated
cloud computing platform. In such architecture, each re-
source provider is an autonomous entity with its own busi-
ness goals. A provider has the ability to choose the other
providers to federate with. In the work by Celesti et al. [9],
the Dynamic Cloud Collaboration is proposed, an approach
for setting up highly dynamic cloud federations. In order
to dynamically federate a new provider, a distributed agree-
ment must be reach among the already federate partners.
Conversely from these approaches, Contrail aims at adopt-
ing a more cloud-independent approach, where the federa-
tion component plays a central role, incorporating function-
alities such as SLA management and advanced mapping.

The problem of allocating physical resources to applica-
tions has been tackled many times in the past, especially
in the Grid and service-oriented communities [3, 11, 5, 12,
10]. In the work by Blythe et al. [5] two families of resource
allocation algorithms are identified: task-based algorithms,
that greedily allocate tasks to resources, and workflow-based
algorithms, that search for an efficient allocation for the en-
tire workflow. Mika et al. [12] propose an application model
similar to the one proposed in this paper. Indeed, they con-
sider computing and networking resources in the grid and
workflows represented as a directed acyclic graph (DAG) of
communicating tasks, with associated computing and net-
working requirements, similarly to what we do.

With respect to the Grid, in the Clouds an additional is-
sue must be considered. In fact, services are encapsulated
in VMs and thus scheduling services may comprise finding
enough resources for a VM to be deployed. As an exam-
ple, the work by Wang et al. [14] addresses the problem of
scheduling parallel tasks within a SOA by taking into ac-
count multiple resources (software, CPU, memory) required
by the corresponding VMs and each service is scheduled
when all the required resources are available.

As we already discussed in the paper, the simulation of a
cloud is an indispensable tool to test scheduling and map-
ping algorithm. In this work we have exploited CloudSim
[7], since it has proved to be efficient and flexible enough
to support heterogeneous systems and evaluations. In fact,
some works exist that have proficiently used this simulator.
For instance, the work by Wu et al. [15] discusses an SLA-
driven mapping on Software as a Service platform, measur-
ing through CloudSim the performances in terms of SLA vi-
olations and economical cost. Also the work by Beloglazov
and Buya [4] uses CloudSim for measuring performances of
an energy-aware resource management algorithm for Infras-
tructure as a Service platforms.

6. CONCLUSION
The exploitation of cloud federations, like the one pro-

posed by the Contrail platform, requires a deep analysis in
term of correctness and performances. Considering the large
scale of the cloud infrastructure and applications, simula-
tions help as a tool for evaluating the feasibility of a solu-
tion. In this context, this paper proposes a model of the
application and cloud resources targeting the Contrail plat-
forms. These concepts were analysed with simulations per-
formed by exploiting the CloudSim simulator. To this end,
we developed additional modules supporting a richer model
of SLA both in applications and in the cloud resources, and
additional mechanisms to support off-line mapping of appli-
cations before their actual deployment. The paper proposed
an evaluation of the scalability of application mapping in a
simulated contrail federation, demonstrating the feasibility
of the approach. Other issues, such as user authentication
and authorization, are left as future work.

7. ACKNOWLEDGMENTS
The authors acknowledge the support of Project FP7-

257438, Contrail: Open Computing Infrastructures for Elas-
tic Services (2010- 2013).

8. REFERENCES
[1] Open Virtualization Format Specification, Version 1.1.

Specification, DMTF, Jan. 2010.

[2] Open Cloud Computing Interface - Core.
Specification, Open Grid Forum, June 2011.

[3] D. Batista and N. da Fonseca. A brief survey on
resource allocation in service oriented grids. In
Globecom Workshops, 2007 IEEE, pages 1–5, nov.
2007.

[4] A. Beloglazov and R. Buyya. Optimal online
deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic
consolidation of virtual machines in cloud data
centers. Concurrency and Computation: Practice and
Experience, 2011.

[5] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi,
A. Mandal, and K. Kennedy. Task scheduling
strategies for workflow-based applications in grids. In
Cluster Computing and the Grid, 2005. CCGrid 2005.
IEEE International Symposium on, volume 2, pages
759 – 767 Vol. 2, may 2005.

[6] R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud:
Utility-oriented federation of cloud computing
environments for scaling of application services.
Algorithms and Architectures for Parallel Processing,
6081/2010(LNCS 6081):20, 2010.

[7] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose,
and R. Buyya. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and
evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50, 2011.

[8] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and
G. Righetti. Cloud federations in contrail. In Euro-Par
2011: Parallel Processing Workshops, volume 7155 of
Lecture Notes in Computer Science, pages 159–168.
Springer Berlin Heidelberg, 2012.

[9] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How
to enhance cloud architectures to enable

cross-federation. In 3rd International Conference on
Cloud Computing, pages 337–345. IEEE, 2010.

[10] T. Cucinotta and G. F. Anastasi. A heuristic for
optimum allocation of real-time service workflows. In
Service-Oriented Computing and Applications
(SOCA), 2011 IEEE International Conference on,
pages 1–4, dec. 2011.

[11] K. Krauter, R. Buyya, and M. Maheswaran. A
taxonomy and survey of grid resource management
systems for distributed computing. Software: Practice
and Experience, 32(2):135–164, 2002.

[12] M. Mika, G. Waligora, and J. Weglarz. Modelling and
solving grid resource allocation problem with network
resources for workflow applications. Journal of
Scheduling, 14:291–306, 2011.

[13] B. Rochwerger, D. Breitgand, E. Levy, A. Galis,

K. Nagin, I. M. Llorente, R. Montero, Y. Wolfsthal,
E. Elmroth, and J. Caceres. The reservoir model and
architecture for open federated cloud computing. IBM
Journal of Research and Development, 53(4):4, 2010.

[14] L. Wang, G. von Laszewski, M. Kunze, and J. Tao.
Schedule distributed virtual machines in a service
oriented environment. In Proceedings of the 2010 24th
IEEE International Conference on Advanced
Information Networking and Applications, AINA ’10,
pages 230–236, Washington, DC, USA, 2010. IEEE
Computer Society.

[15] L. Wu, S. Garg, and R. Buyya. SLA-based resource
allocation for software as a service provider (SaaS) in
cloud computing environments. In Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on, pages 195–204. IEEE,
2011.

