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Abstract 

This study examines patterns of dynamic disciplinary knowledge production and diffusion. It uses a 
citation data set of Scopus indexed journals and proceedings. The journal-level citation data set is 
aggregated into 27 subject areas and these subjects are selected as the unit of analysis. A three-step 
approach is employed: the first step examines disciplines’ citation characteristics through scientific 
trading dimensions; the second step analyzes citation flows between pairs of disciplines; and the third step 
uses ego-centric citation networks to assess individual disciplines’ citation flow diversity through 
Shannon entropy. Results show that measured by scientific impact, the subjects of Chemical Engineering, 
Energy, and Environmental Science have the fastest growths. Furthermore, most subjects are carrying out 
more diversified knowledge trading practices by importing higher volumes of knowledge from a greater 
number of subjects. The study also finds that the growth rates of disciplinary citations align with the 
growth rates of global R&D expenditures, thus providing evidences to support the impact of R&D 
expenditures on knowledge production.  

Introduction 

Knowledge has powered economic growth and profoundly perpetuated the conditions of our existence 
(Knorr-Cetina, 1999). The knowledge societies that we live in are characterized by the proliferation of 
knowledge-intensive communities, specialized in knowledge production and reproduction, knowledge 
learning and exchange, and the use of information technologies (David & Foray, 2002). Knowledge 
societies are propelled by the investment of intangible capitals, typically in the form of education and 
research and development (R&D) expenditures (David, 2000).  

R&D expenditures have a significant impact on economic growth and society’s well-being (Lane, 2009). 
They are becoming an unassailable investment for governments worldwide, developed and developing 
alike (Grueber et al., 2011). United Nations Educational, Scientific and Cultural Organization (UNESCO) 
estimated that as of 2009, 1.77% of the world GDP or 1,277 billion PPP$ (purchasing power parity) are 
spent on R&D (UNESCO, 2011). With these vast investments, there is the need to assess the 
accountability of R&D expenditures, to justify “the national investment in terms of returns that the 
taxpayer can appreciate” (Holton, 1978, p. 200). The general public should be informed on the impact of 
these investments (Lane, 2009): in the short-term, what research centers are established and what papers 
are published; in the longer-term, how will the investments produce new knowledge, create new jobs, and 
build new economy.  

While the inputs of the investments can be quantitatively assessed, evaluations of the outputs are less 
accessible, due to the fact that knowledge is fundamentally unobservable (Jaffe, Trajtenberg, & 
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Henderson, 1993). Thus, alternative instruments, such as surveys, ethnographic methods, and quantitative 
methods, have been employed to study the subject matters. Among these methods, the citation-based 
quantitative methods has gained popularity, because these methods can examine the “full externalities of 
science” that others were incapable of (Adams & Griliches, 1996, p.12664). Citations serve as a valuable 
instrument to study knowledge transfer in science and technology. In the citation representation, a paper, 
patent, journal, author, or institution is a research entity and a citation link denotes the transfer of 
knowledge from the cited entity to the citing entity (Stigler, 1994; Lockett & McWilliams, 2005; Yan, 
Ding, Cronin, & Leydesdorff, 2013).  

While prior citation-based studies have revealed patterns of inter-organizational, interdisciplinary, and 
international knowledge transfer, there lacks a holistic and dynamic examination of disciplinary 
knowledge flows. Consequently, we have limited understandings of how disciplinary knowledge is used 
and diffused. Furthermore, an overview of the relationship between science investments and knowledge 
production at the discipline-level is largely inadequate from the literature. To fill these gaps, this study 
investigates patterns of the dynamic disciplinary knowledge production and diffusion through a citation 
data set that comprehensively indexes journals and proceedings in life sciences, social sciences, physical 
sciences, and health sciences. The following questions will be addressed: 

• What are the characteristics of disciplines measured by scientific trading dimensions (i.e., trading 
impact, exported and imported ratio, disciplinary self-dependence, and trading dynamics); 

• What disciplinary citation flows have the highest growths during the past five citation windows 
from 1997/2000 to 2009/2011;  

• How diversified are disciplines’ citation practices measured by Shannon entropy and what are 
their dynamics; and 

• What is the relationship between R&D expenditures and the volume of knowledge production 
operationalized by the number of citations? 

The answers to these questions will provide large-scale, empirical evidences on knowledge production 
and transfer in science. Relating obtained findings with economy statistics on R&D expenditures, this 
study will also help inform the understanding the impact of science investment to knowledge production 
and innovation.  

Literature review 

Citations are typically employed in quantitative studies of knowledge transfer, predicated on the 
observation that citations imply knowledge flows from the cited documents to the citing ones. In this 
context, two types of document citations can be distinguished: patent citations and paper citations. Patent 
citations have been sought to examine factors that contribute to effective knowledge diffusion between 
different sectors, industries, and geographic locations. Studies that employed paper citations, on the other 
hand, are largely focused on addressing issues related to disciplinarity and interdisciplinarity. Related 
studies are reviewed in the following sections. 

Patent citations and knowledge flows 

Patent citations manifest knowledge flowsparticularly for public research (Roach & Cohen, 2013) and 
serve as an expedient instrument to quantitatively study knowledge production and innovation (Yan, 
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2014). In a pioneering research on the relationship between geographical distances and patent citation 
intensity, Jaffe, Trajtenberg and Henderson (1993) found that domestic patents are more likely to cite 
other domestic patents. Likewise, patent citations were also regulated by country boundaries, 
organizational boundaries, and patent classes (Jaffe & Trajtenberg 1999). These factors can be broadly fit 
into the proximity framework. Proximity provides an accessible way to make inferences into innovation 
and diffusion; it is often seen as having multiple dimensions: for example, distinctions have been made 
between cognitive, organizational, social, institutional, and geographical factors (Boschma, 2005). By 
applying the proximity framework to patent citations, a series of observations have been made. For 
instance, studies have shown that knowledge diffusion is enhanced by physical and technological 
proximity (MacGarvie, 2005; Bacchiocchi & Montobbio, 2007) and is inhibited by geographical 
distances and organizational barriers (Breschi & Lissoni, 2009) and country boundaries (Belenzon & 
Schankerman, 2013; Li, 2014).  

Recent advances on network theories and methods have prompted more “linked” perspectives on studies 
of patent citations. In network representations, proximities are typically modeled as node attributes with 
the goal to assess the association of these proximities to network topology. For instance, the geographic 
proximity was modeled in a patent citation network to examine the impact of U.S. granted, Chinese 
applicants owned patents to knowledge spillovers in China (Yu & Wu, 2014). Through a social network 
analysis, Cassi and Plunket (2014) identified a demonstrable relationship between the physical proximity 
and the likelihood of establishing technological collaborations. Nomaler and Verspagen (2008) employed 
a sector-to-sector matrix to identify inter-sectoral knowledge diffusion patterns. They found that the 
indicator of citations to science literature per patent has effectively captured inter-sectoral knowledge 
diffusion. In the same vein of research, a technological knowledge flow matrix was constructed to 
represent knowledge flows among technology classes and explore the inter-class coherence between 
technology classes and industrial sectors (Ko, Yoon, & Seo, 2014).  

In addition to network-based approaches, statistical methods have gained popularity to model patent 
citationslargely attributed to their inference abilities. Representative statistical methods in this thread of 
research include the linear regression model (e.g., Singh & Marx, 2013), the probit model (e.g., Geroski, 
2000; Fier & Pyka, 2014), Markov Chain (e.g., Parent & LeSage, 2012), and epidemic models (e.g., 
Hethcote, 2000; Vitanov & Ausloos, 2012). Through a regression model, Singh and Marx (2013) 
confirmed that country and state borders have independent effects on knowledge flows in addition to 
geographic proximity measured by distances. The probit modela special case of the regression model 
that only takes two valuesfits patent citations smoothly because these citations are binary in nature (i.e., 
the present or absent of citations are two-valued). Using a probit model, for instance, Geroski (2000) 
postulated that knowledge adoption is dependent with types of organizations; Fier and Pyka (2014) found 
cultural closeness has promoted patent citations between industries. Aside from the regression models, the 
dynamic changes can also be modeled by Markov Chain which posits that the next state is only dependent 
on the current state. This unique feature has posed opportunities to examine many real-world processes 
including patent citations. For instance, through a Bayesian spatial Markov Chain Monte Carlo model, 
Parent and LeSage (2012) identified several factors that can lead to patent production and citations, 
including human resources, research infrastructure, investments, science policies, and regional industry 
structure.  

Paper citations and knowledge flows 
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Paper citations have been employed to study knowledge flows in science in addition to their well-known 
role in scientific evaluations. Because paper citations can be aggregated into several higher levels, studies 
have explored journal-, institution-, and field-level knowledge flows via journal citations, institution 
citations, and field citations. At the journal-level, it is found that journal knowledge flows in library and 
information science is frequent (Zhao & Wu, 2014) and a few library and information science journals 
heavily cited communication science journals (Borgman & Rice, 1992). Similarly, Leydesdorff and 
Probst (2009) revealed that communication science journals received citation flows from political science 
and social psychology journals.  

At the institution-level, through a study of the spatio-temporal changes of 500 most cited research 
institutions, it is found that the intensity of institutional citations is dependent on the distance: the log of 
the citation counts has an inverse linear relationship with the log of the distance (Börner, Penumarthy, 
Meiss, & Ke, 2006). This finding was verified and extended by an analysis of institutional citations in 
library and information science in that the number of citations between institutions is becoming less 
dependent on country boundaries and physical distances (Yan & Sugimoto, 2011). Besides geographic 
distances, structural holes and degree centrality of researchers were also associated with knowledge 
diffusion at the institution level (Liu et al., 2014).  

At the field-level, efforts have been made to describe the global-level knowledge flows (e.g., Van 
Leeuwen & Tijssen, 2000; Rinia, Van Leeuwen, & Bruins, 2001; Naumis & Phillips, 2012; Yan et al., 
2013; Zitt & Cointet, 2014). Zitt and Cointet’s (2014) found a steady drop in variances of normalized 
impact and relative growth in science using a Web of Science data set from 1999 to 2008. Studies have 
also found that publications in one discipline tended to cite papers in adjacent disciplines (Van Leeuwen 
& Tijssen, 2000) and citations to publications of the own discipline occurred sooner than citations to 
papers in other disciplines (Rinia, Van Leeuwen, & Bruins, 2001). Diachronically, it is evident that a 
global-level epistemological change took place around 1960 which gradually reshaped the structure of 
disciplinary knowledge flows (Naumis & Phillips, 2012).  

In the meantime, there is also renewed interest in understanding the between-field knowledge flows, 
stemming from prior qualitative research on disciplinarities (Carnap, 1955; Cole, 1983). The trading 
metaphor has laid a useful framework to interpret field-level citations in this regard: it makes analogies 
with concepts from international trade in that a field serves as a trading unit and can export knowledge by 
receiving citations and importing knowledge by sending citations; a field is a noticeable knowledge 
exporter if it enjoys a knowledge surplus, the fact that it exports more knowledge than it imports, and an 
importer if it has a knowledge deficit (Cronin & Meho, 2008; Yan et al., 2013). Using the trading 
metaphor, Cronin and Meho (2008) found that information science has become a more successful 
exporter of knowledge by receiving citations from computer science, engineering, business and 
management, and education. Similarly, Levitt, Thelwall, and Oppenheim (2011) found that library and 
information science grew the fastest in interdisciplinarity between 1990 and 2000 among all social 
science fields. Statistical models have enriched the field-level diffusion studies, methods such as epidemic 
models (Kiss et al., 2010), main path (Xiao et al., 2014), and dynamic network models (Gao & Guan, 
2012; Rosas et al., 2013) were introduced to identify knowledge flow patterns in the fields of data quality 
research (Xiao et al., 2014), h-index research (Gao & Guan, 2012), kinesin research (Kiss et al, 2010), 
and National Institutes of Health (NIH) HIV/AIDS clinical trials (Rosas et al., 2013).  
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Lastly, there are attempts to jointly study patent and paper citations. An earlier research found that 
citations from U.S. patents to U.S. research papers have tripled over a six-year period from 1987 to 1993 
(Narin, Hamilton, & Olivastro, 1997). Although research has assessed the impact of journal publications 
on patents (Fabrizio & Di Minin, 2008; Azoulay, Ding, & Stuart, 2009), these studies used small sets of 
papers and patents and did not provide an extensive picture on the mutual engagement of publications and 
patents at a higher and more abstract level.  

While the previous literature has laid a solid theoretical and methodological foundation for quantitative 
studies of knowledge diffusion, there lack a holistic and dynamic examination of disciplinary knowledge 
flows. The goal of this research is to fill this gap by probing into the dynamic characteristics of sciences 
and social sciences at three integrated levels that include disciplines, disciplinary citation flows, and 
disciplinary ego-centric networks. Data, methods, and results are presented in the following sections.  

Data  

Scopus data 

The Data section first introduces the Scopus data set used in this study; it then discusses the limitations of 
using the data set to study disciplinary knowledge flows. The data set was awarded by the Elsevier 
Bibliometrics Research Program. The intermediary data file was a journal-to-journal citation matrix for 
all indexed journals and proceedings in Scopus with a two-year citation window; that is, citations in year t 
to papers published in year t-2. Data on the following cited/citing years were obtained: 1997/1999, 
2000/2002, 2003/2005, 2006/2008, and 2009/2011. The journal-to-journal citation data were aggregated 
to the discipline level using Elsevier’s journal classification schema named All Science Classification 
Codes (ASJC). The schema comprises journals and proceedings, 307 minor subject areas, 27 major 
subject areas, and four top-level domains. A journal is typically assigned into one or a few minor subject 
areas; these minor subject areas are grouped into one of the major subject areas and these in turn are 
grouped into one of the four top-level domains: Life Sciences, Social Sciences, Physical Science, and 
Health Sciences (Figure 1). In this study, we will focus on the analysis of the 27 major subject areas and 
the four top-level domains.  
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Figure 1. All Science Classification Code (ASJC) by Elsevier 

There are in total 9,216 journals that occurred in all five citation windows and these journals were 
aggregated into the major subject level based on ASJC. Figure 1 shows the number of journal citation 
pairs formed by these journals and the aggregated number of citations for each citation window. In the 
2009/2011 citation window, the data set comprises 619,753 journal citation links and 2,167,594 
aggregated citations among the 9,216 journals. When aggregating these journals, fraction counting was 
considered in that if a journal is associated with multiple major subject areas, its citations are divided 
among these subjects. Figure 2 shows an example of the aggregation. 
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Figure 2. An example of aggregating journal-level citations to the major subject area level 

The example illustrates the citation relations among three sample journals J1, J2, and J3. Based on ASJC, 
J1 is associated with one major subject areas 1300 (Biochemistry); J2 is associated with two major 
subject areas 1300 (Biochemistry) and 2200 (Engineering); J3 is associated with two major subject areas 
1500 (Chemical Engineering) and 2200 (Engineering). The fractional counting considers three factors: the 
number of citations from one journal to another (C), the number of associated subjects for the citing 
journal (N1), and the number of associated subjects for the cited journal (N2). The resulted fractional 
number of citations is C/(N1*N2). For instance, J2 cited J3 30 times and both J2 and J3 are associated 
with two subjects; the following four subject citation links are formed: Biochemistry (1300)-Chemical 
Engineering (1500), Biochemistry (1300)-Engineering (2200), Engineering (2200)-Chemical Engineering 
(1500), and Engineering (2200)-Engineering (2200), all of which has a fractional number of citations of 
30/(2*2)=7.5. Thus, this fractional counting addresses the need to include journal multi-assignments 
while keeping the subject-level citations uninflated.   

The numbers of journals that are associated with different numbers of major subject areas are illustrated 
in Figure 2(d). The numbers show that up to 52% of journals and proceedings are associated with one 
major subject area and up to 35% are associated with two major subject areas. Two sources are associated 
with eight major subject areas: Bulletin of Mathematical Biology and Materials Letters. 

Limitations 

The limitations of this study are primarily derived from the journal citation data and the employed journal 
classification scheme ASJC. First, although Scopus tends to have a more comprehensive coverage on 
journals and proceedings than the Web of Science database (Klavans & Boyack, 2007; Meho & Yang, 
2008; Leydesdorff, de Moya‐Anegón, & Guerrero‐Bote, 2010; Leydesdorff, de Moya-Anegón, & de 
Nooy, 2014), it is not expected to contain all important scholarly literature―compared with biomedical 
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related disciplines, social science and humanities may still have an inequitable visibility in Scopus (de 
Moya-Anegón et al., 2007). Second, the two-year citation window tends to favor subjects with high 
immediacy and penalize subject with lower immediacy (Schubert & Glänzel, 1986). For instance, in 
reference to the tendency of scientists to cite recent work, Stephen Cole (1983) argued that “[i]n highly 
codified fields we should find a faster rate…than in fields with lower levels of codification” (p. 125). 
Some of the more highly codified fields, according to Zuckerman and Merton (1973), include physics, 
biophysics, and chemistry which “show a larger share of reference to recent work; they exhibit a greater 
‘immediacy’” (p. 508). Third, in regards to ASJC, similar to other classification schemes, it takes into 
consideration several factorscitation patterns, editorial judgments, and managerial decisions (Garfield, 
Pudovkin, & Istomin, 2002). Moreover, ASJC seems to have more elaborate hierarchies for biomedicine 
as up to 10 major subject areas relate closely to this field, while general social science fields are grouped 
into one major subject area. Citations of social sciences are sparser and largely stay within the social 
sciences (Yan, 2014); thus the unbalanced representation may make it more difficult to inclusively 
capture the citation flows within social sciences. Realizing these limitations, in this study, major subject 
areas in ASJC was employed as a proxy to study disciplinary knowledge flows. Comparisons with other 
classification approaches, such as the Map of Science (Boyack, Börner, & Klavans, 2005; Börner et al., 
2012) and modularity-based methods (Waltman & Van Eck, 2012; Zhang et al., 2010) are thus 
recommended as future work.  

This work makes a “ceteris paribus” assumption that knowledge flows are the only changing variable here 
while all other factors remain constant. This assumption helps interpret the citation numbers but clearly 
subjects to some alternative accounts because knowledge production and diffusion is a complex social 
process that draws strengths from a variety of factors. Because of the observability and complexity issues, 
studies on knowledge transfer typically made ceteris paribus assumptions (e.g., Bresman, Birkinshaw, & 
Nobel, 1999; Contractor & Ra, 2002; Mu, Tang, & MacLachlan, 2009). 

Another noticeable boundary of this work lies on the level of interpretations. This work presents rich 
descriptive findings; however, to further understand the numbers, one needs to examine more nuanced 
disciplinary citation practices, such as reference length, publishing frequency, and community size. One 
also needs to use additional data sources such as those on funding decisions and science policies to 
determine the latent mechanisms that may lead to the dynamic changes of disciplinary characteristics.  

Methods 

Characteristics of disciplines measured by scientific trading dimensions  

To reveal disciplinary citation practices at node-, link-, and network-levels, a three-step approach is 
espoused. The first step examines individual disciplines’ citation characteristics through scientific trading 
dimensions (i.e., incoming citations, cited/citing ratios, self-citation ratios, and citation dynamics). The 
second step analyzes citation flows between two disciplines. The third step involves the ego-centric 
analysis of individual disciplines’ citation flow diversity measured by Shannon entropy. These efforts 
deliver dynamic, comprehensive perspectives to disciplinary citation patterns. Each step is elaborated in 
the following paragraphs.  
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Yan and colleagues’ (2013) scientific trading dimensions were adopted: incoming citations signify 
scientific trading impact; cited/citing ratios leverage the balance between exported and imported 
knowledge; and self-citation ratios denote disciplinary self-dependence.  

 

Figure 3. An example of calculating scientific trading dimensions 

Using the same example introduced in Figure 2, Figure 3 illustrates the calculation of incoming citations 
(Figure 3(a)), cited/citing ratios (Figure 3(b)), self-citation ratios (Figure 3(c)), and citation dynamics 
(Figure 3(d)) for Biochemistry (1300), Chemical Engineering (1500), and Engineering (2200). The 
weighted directed subject-to-subject citation network can be represented as G=(V, A) where A represents 
the weighted directed link set and V represents the vertex set of subjects.  

• Incoming citations (Trading impact): 𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑖𝑖𝑡𝑖𝑡𝑘 = ∑ 𝐺𝑖𝑘𝑛
𝑖=1 , for subject area k where 𝐺𝑖𝑘 

is the incoming citations from subject i to k and n is the number of subject areas. In this study, n 
equals 27. 

• Cited/citing ratio (Exports/imports): export/importk = ∑ Gikn
i=1

∑ Gkjn
j=1

, for subject area k. In scientific 

trading, if a discipline exports more knowledge than it imports, it is a knowledge exporter; if a 
discipline imports more knowledge than it export, then it is a knowledge importer. Cited/citing 
ratio leverages the relationship between the exported and imported knowledge: a cited/citing ratio 
of one suggests a trading balance, a ratio greater one suggests a trading surplus, and a ratio 
smaller than one suggests a trading deficit.   

• Self-citation ratio (Self-dependence): self_citation_ratiok = Gkk
∑ Gikn
i=1

, for subject area k. Self-

citation ratios have been proven to be an effective measure of disciplinary self-dependence (e.g., 
Borgman & Rice, 1992; Leydesdorff, 2011). Prior studies suggested that independent disciplines 
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tend to have higher self-citation ratios and are likely to be those having established educational 
systems and distinctive scholarly communication channels whereas dependent disciplines tend to 
have lower self-citation ratios and are likely to be newer or less-established ones (e.g., Yan et al., 
2013). 

• Citation dynamics (Trading dynamics): trading_dynamicsk = slope(xk,t, xk,t+1, … ), for subject 
area k. Ideally, x can be any of the incoming citations, cited/citing ratios, or self-citations ratios; 
however, as results have shown that the slopes of cited/citing ratios and self-citation ratios for 
most subjects in this study were not significant at the 0.05, only the slopes of incoming citations 
were reported in this study. Incoming citations were fit into a one-independent variable linear 
regression where the citation windows are the independent variable ranging from 1 to 5 (t: [1,5]) 

and the normalized incoming citations 𝑡𝑡𝑡𝑡𝑖𝑛𝑡_𝑖𝑖𝑖𝑡𝑖𝑡𝑘:𝑡
∑ 𝑡𝑡𝑡𝑡𝑖𝑛𝑡_𝑖𝑖𝑖𝑡𝑖𝑡𝑘:𝑡
5
𝑡

= ∑ 𝐺𝑖𝑘:𝑡
𝑛
𝑖=1

∑ ∑ 𝐺𝑖𝑘:𝑡
𝑛
𝑖=1

5
𝑡=1

 for subject k are the 

dependent variable. Slopes from each individual linear regression can thus be obtained. The 
normalization makes it possible to compare slopes across different subjects. 

Disciplinary citation flows 

This subsection introduces the link-level approach to examine disciplinary citation flows. The creation of 
knowledge is not independent, but rather, it is dependent on the transfer of knowledge from one to 
another. To examine the dynamic aspect of such disciplinary knowledge flows, slopes of each citation 
link over the past five citation windows were obtained using the same normalization method: 𝐺𝑖𝑘𝑛𝑛𝑡𝑖 =
𝐺𝑖𝑘:𝑡

∑ 𝐺𝑖𝑘:𝑡
5
𝑡=1

, where 𝐺𝑖𝑘𝑛𝑛𝑡𝑖 is the weight of the normalized citation link from the citing subject i to the cited 

subject k. The dynamics of disciplinary citation flows can be expressed as: 

𝑓𝑓𝑓𝑓_𝑡𝑑𝑡𝑡𝑖𝑡𝑖𝑑𝑖𝑘 = 𝑑𝑓𝑓𝑖𝑠(𝐺𝑖𝑘,𝑡
𝑛𝑛𝑡𝑖,𝐺𝑖𝑘,𝑡+1

𝑛𝑛𝑡𝑖 , … ) 

Because weaker links are more susceptible to change than established ones, citation links are examined 
separately based on link weights in the 1997/1999 citation window: those between 100 and 1,000, those 
between 1,000 and 10,000, and those heavier than 10,000. 

Disciplinary ego-centric networks measured by Shannon entropy 

This subsection introduces the ego-centric approach to examine disciplinary citation diversity. Disciplines 
vary greatly in their ability to export and import knowledge: some are more permeable while others are 
more self-dependent. To quantify such interdisciplinary diversity, Shannon entropy was applied. Shannon 
entropy has been widely used in evaluating signal transmissions (e.g., Lin, 1991). In the context of 
scientific trading, it measures, for each subject, the proportions of each incoming or outgoing citation 
sources (i.e., major subject areas). Shannon entropy therefore effectively assesses the knowledge flow 
diversity for each subject (e.g., Zhang et al., 2010). Citation diversity as measured by Shannon entropy:  

𝐻𝑘:𝑖𝑛𝑖𝑛𝑖𝑖𝑛𝑡 = −�
𝐺𝑖𝑘

∑ 𝐺𝑗𝑘𝑛
𝑗=1

𝑛

𝑖=1
ln

𝐺𝑖𝑘
∑ 𝐺𝑗𝑘𝑛
𝑗=1
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where 𝐻𝑘:𝑖𝑛𝑖𝑛𝑖𝑖𝑛𝑡 is the Shannon entropy for subject k measured by incoming citations to k, 𝐺𝑖𝑘 is the 

incoming citations from subject i to k, 𝐺𝑖𝑘
∑ 𝐺𝑗𝑘𝑛
𝑗=1

 is the proportion of incoming citations from i to k over the 

total incoming citations of k, and n is the number of subject areas. The Shannon entropy for subject k 
measured by outgoing citations from k can thus be expressed as:  

𝐻𝑘:𝑛𝑜𝑡𝑡𝑛𝑖𝑛𝑡 = −�
𝐺𝑘𝑖

∑ 𝐺𝑘𝑗𝑛
𝑗=1

𝑛

𝑖=1
ln

𝐺𝑘𝑖
∑ 𝐺𝑘𝑗𝑛
𝑗=1

 

Shannon entropy can also be applied to the top-level domains for each subject area. The Shannon entropy 
for subject k measured by incoming citations from k can thus be expressed as: 𝐻𝑘:𝑖𝑛𝑖𝑛𝑖𝑖𝑛𝑡 =

−∑ ∑ 𝐺𝑖𝑘𝑛
𝑎=1∩𝑎∈𝑖
∑ 𝐺𝑗𝑘𝑛
𝑗=1

𝑖
𝑖=1 ln ∑ 𝐺𝑖𝑘𝑛

𝑎=1∩𝑎∈𝑖
∑ 𝐺𝑗𝑘𝑛
𝑗=1

, where m is the number of top-level domains―in this study, m equals 4 

(i=1 for Life Sciences, 2 for Social Sciences, 3 for Physical Science, and 4 for Health Sciences), n is still 
the number of subject areas, and ∑ 𝐺𝑖𝑘𝑛

𝑡=1∩𝑡∈𝑖  determines the number of citations subject k received from 
all subjects that are assigned into domain i. The Shannon entropy for subject k as measured by outgoing 

citations from k can thus be expressed as: 𝐻𝑘:𝑛𝑜𝑡𝑡𝑛𝑖𝑛𝑡 = −∑ ∑ 𝐺𝑘𝑖𝑛
𝑎=1∩𝑎∈𝑖
∑ 𝐺𝑘𝑗𝑛
𝑗=1

𝑖
𝑖=1 ln ∑ 𝐺𝑘𝑖𝑛

𝑎=1∩𝑎∈𝑖
∑ 𝐺𝑘𝑗𝑛
𝑗=1

. 

Results 

This section first introduces results on the characteristics of disciplines measured by scientific trading 
dimensions; it then reports the characteristics of disciplinary citation flows; it lastly presents results on 
disciplinary flow diversity through Shannon entropy.  

Characteristics of disciplines  

We reports results on four disciplinary trading dimensions: trading impact (Figure 4), cited/citing ratios 
(Figure 5), disciplinary self-dependence (Figure 6), and trading dynamics (Table 1). In Figure 4, the y-
axis denotes the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑡𝑖𝑖𝑡𝑖𝑡𝑘:𝑡 of subject k in citation window t. 
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Figure 4. Incoming citations of the 27 subjects 

Except for General and Biochemistry, all other disciplines received more scientific impact during the past 
five citation windows. The increasing rate varies across disciplines: while Chemical Engineering, Energy, 
and Environmental Science gained a significant amount of trading impact, Immunology had a narrower 
gain. These dynamic characteristics will be further examined in Table 1.  

Results on cited/citing ratios are illustrated in Figure 5 where the y-axis denotes the 𝑠𝑥𝑖𝑓𝑡𝑡/𝑡𝑖𝑖𝑓𝑡𝑡𝑘:𝑡 of 
subject k in citation window t.  
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Figure 5. Cited/citing ratios of the 27 subjects 

We see from Figure 5 that most subjects maintained relatively stable cited/citing ratios during the past 
five citation windows, with the exception of General, Energy, and Materials Science in that a noticeable 
drop can be found and Computer Science, Decision Sciences, Pharmacology, Social Sciences, and 
Veterinary in that a visible increase is present. The results suggest that the former group became importer-
oriented, while the latter group had a tendency to become exporter-oriented.  

Diachronical patterns of self-citation ratios for the 27 subjects are reported in Figure 6 where the y-axis 
denotes the 𝑑𝑠𝑓𝑓_𝑖𝑡𝑡𝑡𝑡𝑡𝑓𝑡_𝑡𝑡𝑡𝑡𝑓𝑘:𝑡 of subject k in citation window t.  

 

Figure 6. Self-citation ratios of the 27 subjects 

While most subjects in Figure 6 exhibited moderately declining self-citation ratios, there are subjects that 
have discernable ratio increase, including General, Business, Energy, Environmental Science, and 
Nursing, indicating that these are the subjects that became more sustained on its own disciplinary 
knowledge. Subject that have noticeable ratio decrease include Biochemistry, Economics, Immunology, 
Psychology, Social Sciences, Veterinary, and Dentistry, implying a growing interdisciplinary dependency. 
Subdomain analyses are necessary to further understand these dynamic characteristics. 

Table 1 lists incoming citations, cited/citing ratios, and self-citation ratios in 2009/2011 as well as the 
slopes for normalized citations.  

Table 1. Incoming citations, cited/citing ratios, and self-citation ratios for the 27 subjects 

 Incoming 
citations (rank) 

Slope of norm. 
citations (rank) 

Cited/citing 
ratio (rank) 

Self-citation 
ratio (rank) 

General 63,584 (11) -0.0045 (27) 3.45 (1) 0.06 (27) 
Agricultural and Biological Sciences 98,695 (5) 0.0318 (19) 0.91 (20) 0.51 (5) 
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Arts and Humanities 2,806 (27) 0.0289 (20) 0.99 (9) 0.22 (23) 
Biochemistry, Genetics and Molecular Biology 266,485 (2) -0.0011 (26) 1.04 (5) 0.35 (15) 
Business, Management and Accounting 10,486 (23) 0.0477 (8) 0.98 (11) 0.44 (10) 
Chemical Engineering 53,276 (14) 0.0562 (3) 1.05 (4) 0.18 (26) 
Chemistry 162,392 (4) 0.0413 (13) 0.90 (23) 0.43 (11) 
Computer Science 28,202 (18) 0.0537 (5) 0.97 (13) 0.36 (13) 
Decision Sciences 5,021 (26) 0.0544 (4) 1.16 (2) 0.21 (25) 
Earth and Planetary Sciences 63,767 (10) 0.0345 (18) 0.99 (9) 0.61 (3) 
Economics, Econometrics and Finance 10,904 (22) 0.0362 (15) 1.13 (3) 0.47 (7) 
Energy 18,747 (19) 0.0912 (1) 0.94 (18) 0.32 (18) 
Engineering 80,802 (6) 0.0533 (6) 0.93 (19) 0.34 (17) 
Environmental Science 73,599 (8) 0.0585 (2) 0.96 (15) 0.36 (13) 
Immunology and Microbiology 55,429 (12) 0.0013 (25) 0.97 (13) 0.25 (21) 
Materials Science 80,546 (7) 0.0430 (9) 0.89 (24) 0.30 (19) 
Mathematics 36,685 (15) 0.0504 (7) 1.02 (7) 0.49 (6) 
Medicine 647,218 (1) 0.0166 (23) 1.03 (6) 0.63 (1) 
Neuroscience 69,694 (9) 0.0151 (24) 0.98 (11) 0.35 (15) 
Nursing 17,085 (20) 0.0355 (17) 0.91 (20) 0.24 (22) 
Pharmacology, Toxicology and Pharmaceutics 53,589 (13) 0.0230 (22) 0.79 (26) 0.27 (20) 
Physics and Astronomy 170,679 (3) 0.0282 (21) 1.00 (8) 0.59 (4) 
Psychology 33,977 (17) 0.0430 (9) 0.95 (16) 0.39 (12) 
Social Sciences 34,472 (16) 0.0401 (14) 0.95 (16) 0.45 (9) 
Veterinary 9,192 (25) 0.0359 (16) 0.75 (27) 0.47 (7) 
Dentistry 9,350 (24) 0.0427 (11) 0.91 (20) 0.62 (2) 
Health Professions 10,911 (21) 0.0426 (12) 0.89 (24) 0.22 (23) 

 

In regards to incoming citations, subjects such as Medicine, Biochemistry, Physics, Chemistry, and 
Agricultural Sciences are the ones with the highest trading impact. Energy, Environmental Science, 
Chemical Engineering, Decision Sciences, and Computer Science had the fastest growths, indicating that 
their disciplinary knowledge became more visible among others. Highly visible disciplines such as 
Biochemistry, Immunology, Neuroscience, Medicine, and Pharmacology, on the other hand, had the least 
fast growth.  

As for cited/citing ratios, the subject of General received a cited/citing ratio far above one. This subject 
contains journals such as Science and Nature―their papers were more intensively cited than the others, 
thus resulting in a high cited/citing ratio. Other knowledge exporters include Decision Sciences, 
Economics, Chemical Engineering, and Biochemistry. Subjects such as Veterinary Science and 
Pharmacology had a cited/citing ratio smaller than one, suggesting a knowledge deficit. 

Except for General, all other subjects retained high self-citation ratios, ranging from 0.18 to 0.63. Because 
General primarily contains multidisciplinary journals, its low self-citation ratio comes as no surprise. 
Disciplines such as Medicine, Dentistry, and Earth and Planetary Sciences had the highest self-citation 
ratios, suggesting that they possessed a more distinctive cognitive core than the others. Chemical 
Engineering and Decision Sciences, on the other hand, were more permeable and did not yet form more 
distinguishable cognitive bases. 

Dynamic patterns of disciplinary citation flows 

We now further our analysis from disciplines to disciplinary citation flows. Figure 7 shows three sets of 
citation links that had the highest increases: link weights between 100 and 1,000 (first ten images, in blue), 
between 1,000 and 10,000 (middle ten images, in green), and greater than 10,000 (last ten images, in red). 
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The y-axis shows the percentage of citations in citation window t over the sum of citations from all 
windows 𝐺𝑖𝑘:𝑡

∑ 𝐺𝑖𝑘:𝑡
5
𝑡=1

. 

 

Figure 7. Top citation flows that had the highest increase for three link weight levels: 10e2~10e3 (blue), 
10e3~10e4 (green), and 10e4~ (red) 

Overall, among the top citation flows illustrated in Figure 7, those in the 10e2~10e3 category grew faster 
than those in the 10e3~10e4 category and the latter grew faster than those in the 10e4~ category, 
suggesting that more established citation flows are less susceptible to change. Energy stands out in the 
10e2~10e3 category: it formed stronger exporting and importing relationships with Environmental 
Science, Chemical Engineering, Chemistry, and Engineering. In the 10e3~10e4 category, Chemistry 
strengthened its connections with Environmental Science, Engineering, and Agricultural Sciences; other 
heightened citation flows in this category include the ones from Materials Science to Chemical 
Engineering, from Engineering to Computer Science, from Computer Science to Mathematics, from 
Chemical Engineering to Materials Science, and from Psychology to Neuroscience. In the 10e4~ category, 
Medicine enhanced its relationship with Chemistry, Pharmacology, Neuroscience, and Immunology. 
These escalated citation flows suggest that the connected subjects became more inter-dependent and more 
absorptive towards each other’s knowledge.  

Dynamic patterns of the diversity of disciplinary citation practices  

In this subsection, we report results obtained from disciplinary ego-centric network analyses. These 
results help depict the diversity of disciplinary citation practices. Area maps were employed to render 
visualizations on the diversity of incoming citations (Figure 8) and outgoing citations (Figure 9). Both 
figures adopted the same color coding scheme: different shades of blue for subjects in Life Sciences, 
shades of green for subjects in Social Sciences, shades of yellow for subjects in Physical Sciences, and 
shades of red for subjects in Health Sciences (as seen in the legends).  
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Figure 8. An area map representation of sources of incoming citations for the 27 subjects 

Most subjects had a dominant source of incoming citations, typically the subjects themselves. A few 
subjects, however, were largely dependent on subjects other than themselves; for instance, Arts and 
Humanities received most citations from Social Sciences; Immunology, Nursing, and Health Professions 
received most citations from Medicine. In addition, some subjects maintained two or a few equally 
important knowledge importers; for instance, Biochemistry had Medicine and itself; Computer Science 
had Mathematics, Engineering, and itself; Neuroscience had Medicine and itself; Pharmacology had 
Medicine and itself; and Psychology had Medicine and itself. Diachronically, ratios of sources of 
incoming citations remained relatively stable, though there was a gradual percentile decline of the 
primary knowledge importer for some disciplines (e.g., Physics and Veterinary). Such dynamic changes 
will be captured through a time series analysis through Shannon entropy.  
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Figure 9. An area map representation of sources of outgoing citations for the 27 subjects 

Overall, sources of outgoing citations for each subject have similar patterns with incoming citations, in 
that the majority of subjects imported most knowledge from themselves, a few imported the most from 
subjects other than themselves, and a few imported an equal amount from two or more subjects.  

Table 2 lists the Shannon entropy for incoming citations and outgoing citations in 2009/2011.  

Table 2. Shannon entropy for incoming citations and outgoing citations for the 27 subjects 

 
Incoming citations Outgoing citations 

Shannon 
Entropy (rank) Slope (rank) Shannon 

Entropy (rank) Slope (rank) 

General 3.47 (1) 0.0087 (1) 3.29 (5) 0.0074 (1) 
Agricultural and Biological Sciences 2.64 (17) 0.0026 (13) 2.78 (14) 0.0026 (10) 
Arts and Humanities 3.20 (4) 0.0014 (20) 3.38 (1) 0.0018 (15) 
Biochemistry, Genetics and Molecular Biology 2.82 (13) 0.0082 (2) 2.74 (15) 0.0074 (1) 
Business, Management and Accounting 2.77 (14) 0.0013 (21) 2.80 (13) 0.0017 (16) 
Chemical Engineering 3.17 (6) 0.002 (18) 3.33 (3) 0.0016 (18) 
Chemistry 2.87 (11) 0.0024 (15) 3.02 (10) 0.0013 (20) 
Computer Science 3.00 (9) 0.0006 (25) 3.12 (7) 0.0001 (25) 
Decision Sciences 3.20 (4) 0.0017 (19) 3.10 (8) -0.0005 (26) 
Earth and Planetary Sciences 2.12 (26) 0.0024 (15) 2.21 (24) 0.0021 (13) 
Economics, Econometrics and Finance 2.60 (19) 0.0057 (6) 2.40 (22) 0.0052 (5) 
Energy 3.11 (7) -0.0008 (26) 3.25 (6) 0.0009 (22) 
Engineering 3.22 (3) 0.0013 (21) 3.37 (2) 0.0022 (11) 
Environmental Science 3.23 (2) 0.001 (24) 3.31 (4) 0.0012 (21) 
Immunology and Microbiology 2.72 (15) 0.0068 (3) 2.68 (17) 0.0059 (4) 
Materials Science 2.87 (11) 0.0026 (13) 3.00 (11) 0.0043 (6) 
Mathematics 2.72 (15) 0.0051 (7) 2.69 (16) 0.0022 (11) 
Medicine 2.24 (25) 0.003 (10) 2.11 (26) 0.0017 (16) 
Neuroscience 2.50 (20) 0.0029 (12) 2.47 (20) 0.0016 (18) 
Nursing 2.38 (22) 0.0011 (23) 2.18 (25) 0.0002 (24) 
Pharmacology, Toxicology and Pharmaceutics 2.93 (10) 0.0051 (7) 2.82 (12) 0.0029 (8) 
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Physics and Astronomy 2.29 (24) 0.0047 (9) 2.37 (23) 0.0067 (3) 
Psychology 2.63 (18) 0.0021 (17) 2.64 (18) 0.0019 (14) 
Social Sciences 3.02 (8) 0.0058 (5) 3.08 (9) 0.004 (7) 
Veterinary 2.35 (23) 0.003 (10) 2.57 (19) 0.0009 (22) 
Dentistry 1.77 (27) 0.0064 (4) 1.87 (27) 0.0027 (9) 
Health Professions 2.49 (21) -0.0008 (26) 2.46 (21) -0.0021 (27) 
 

The subjects of General, Environmental Science, Engineering, Decision Sciences, and Arts and 
Humanities had the highest Shannon entropy for incoming citations; Arts and Humanities, Engineering, 
Chemical Engineering, Environmental Science, and General had the highest Shannon entropy for 
outgoing citationsthese subjects are thus the most diversified and interdisciplinary at the discipline 
level. On the other hand, Dentistry, Earth and Planetary Sciences, Medicine, Physics, and Veterinary had 
the lowest Shannon entropy for incoming citations; Dentistry, Medicine, Nursing, Earth and Planetary 
Sciences, and Physics had the lowest Shannon entropy for outgoing citations. Dynamically, except for 
three subjects, Computer Science, Energy, and Health Professions, all other subjects gained entropy. 
General, Biochemistry, and Immunology possessed the highest entropy growth (for both incoming and 
outgoing citations), suggesting that they made the greatest effort in diversifying their scientific trading 
practices.  

Subject-level citations can be further aggregated into top domains. Sources of domain-level incoming 
(Figure 10) and outgoing citations (Figure 11) for each subject are illustrated2. Both figures adopted the 
same color coding scheme: blue for Life Sciences, green for Social Sciences, yellow for Physical 
Sciences, and red for Health Sciences. 

 

                                                           
2 The subject of General is not assigned to any of the four domains in ASJC; its citations are therefore not included 
in calculating domain-level citations for each subject. 
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Figure 10. An area map representation of the aggregated sources of incoming citations for 27 subjects 

 

Figure 11. An area map representation of the aggregated sources of outgoing citations for 27 subjects 

Both figures show that for most subjects, the majority of incoming and outgoing citations took place 
within one particular top-level domain. For instance, most incoming and outgoing citations of Arts and 
Humanities, Business, Economics, and Social Sciences occurred within the top-level domain of Social 
Sciences; most incoming and outgoing citations of Chemical Engineering, Chemistry, Computer Science, 
Earth & Planetary Science, Energy, Engineering, Materials Science, Mathematics, and Physics occurred 
within the top-level domain of Physical Sciences; most incoming and outgoing citations of Medicine, 
Nursing, Dentistry, and Health Profession occurred within Health Sciences. Subjects assigned to the top-
level domain of Life Sciences pertained to less homogeneity: incoming and outgoing citations of subjects 
such as Agricultural Sciences, Biochemistry, Immunology, Neuroscience, and Pharmacology had a 
noticeable cross over with Health Sciences and Physical Sciences. Additionally, two Social Sciences 
assigned subjects Decision Sciences and Psychology also had mixed domain-level trading practices―the 
former had marked knowledge trading with Social Sciences and Physical Sciences, and the latter with 
Social Sciences and Health Sciences.  

Table 3 lists the Shannon entropy for incoming citations and outgoing citations aggregated at the top-level 
domains in 2009/2011.  

Table 3. Shannon entropy for aggregated incoming citations and outgoing citations for the 27 subjects 

 
Incoming citations Outgoing citations 

Shannon 
Entropy (rank) Slope (rank) Shannon 

Entropy (rank) Slope (rank) 

General 1.62 (1) 0.0076 (6) 1.59 (1) 0.0075 (4) 
Agricultural and Biological Sciences 1.21 (13) 0.0042 (10) 1.25 (11) 0.0049 (11) 
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Arts and Humanities 1.33 (7) 0.0036 (11) 1.43 (5) 0.0042 (12) 
Biochemistry, Genetics and Molecular Biology 1.45 (4) 0.0083 (3) 1.39 (6) 0.008 (3) 
Business, Management and Accounting 0.81 (20) 0.0064 (8) 0.78 (19) 0.0061 (7) 
Chemical Engineering 0.85 (19) -0.0103 (27) 0.94 (18) -0.0087 (27) 
Chemistry 0.99 (16) -0.004 (25) 1.10 (15) -0.0037 (25) 
Computer Science 0.86 (17) -0.003 (23) 0.96 (17) -0.0019 (22) 
Decision Sciences 1.27 (9) -0.0039 (24) 1.30 (9) -0.0026 (23) 
Earth and Planetary Sciences 0.62 (23) 0 (19) 0.66 (24) -0.0013 (21) 
Economics, Econometrics and Finance 0.86 (17) 0.014 (1) 0.75 (21) 0.0093 (1) 
Energy 0.39 (26) -0.0003 (20) 0.50 (26) 0.0086 (2) 
Engineering 0.60 (24) -0.0022 (22) 0.72 (22) -0.0003 (19) 
Environmental Science 1.27 (9) -0.0049 (26) 1.35 (7) -0.0045 (26) 
Immunology and Microbiology 1.32 (8) 0.0072 (7) 1.28 (10) 0.0066 (6) 
Materials Science 0.47 (25) 0.0005 (18) 0.58 (25) 0.006 (8) 
Mathematics 0.68 (22) 0.0011 (15) 0.68 (23) 0.0009 (18) 
Medicine 1.27 (9) 0.0023 (13) 1.21 (12) 0.0021 (17) 
Neuroscience 1.41 (6) 0.0082 (5) 1.35 (7) 0.0071 (5) 
Nursing 1.09 (15) 0.0011 (15) 1.00 (16) -0.0006 (20) 
Pharmacology, Toxicology and Pharmaceutics 1.53 (2) 0.0044 (9) 1.48 (3) 0.0041 (13) 
Physics and Astronomy 0.34 (27) 0.0008 (17) 0.41 (27) 0.0026 (15) 
Psychology 1.51 (3) 0.0022 (14) 1.54 (2) 0.0025 (16) 
Social Sciences 1.44 (5) 0.0083 (3) 1.44 (4) 0.005 (10) 
Veterinary 1.11 (14) 0.0033 (12) 1.12 (14) 0.0027 (14) 
Dentistry 0.72 (21) 0.0114 (2) 0.76 (20) 0.0051 (9) 
Health Professions 1.22 (12) -0.0007 (21) 1.20 (13) -0.0034 (24) 

 

General, Pharmacology, Psychology, Biochemistry, Social Sciences, and Arts and Humanities were the 
most diversified subjects when considering incoming and outgoing citations at the four top-level domains. 
Meanwhile, Physics, Energy, Materials Science, Engineering, Mathematics, and Earth and Planetary 
Sciences were the least diversified. Diachronically, eight subjects (i.e., Chemical Engineering, Chemistry, 
Computer Science, Decision Sciences, Energy, Engineering, Environmental Science, and Health 
Professions) became less diversified as knowledge exporters while nine subjects (i.e., Chemical 
Engineering, Chemistry, Computer Science, Decision Sciences, Earth and Planetary Sciences, 
Engineering, Environmental Science, Nursing, and Health Professions) became less diversified as 
knowledge importers. When comparing the results with the subject-level Shannon entropy, it is found that 
although disciplines became more interdisciplinary-oriented at the subject-level, cross top-domain level 
knowledge transfer was less practiced.  

Discussions  

Disciplinarity and interdisciplinarity 

Modern science is organized through disciplines (Klein, 1990). They vary greatly in permeability and 
cognitive autonomy (e.g., Klein, 1996; Yan et al., 2013; Yan, 2014). This study shows that disciplines 
such as earth and planetary science, medicine, and dentistry have the highest self-citation ratios and are 
thus highly specialized and strongly dependent on their own knowledge bases. These disciplines typically 
have established educational institutions (e.g., Department of Geology, School of Medicine, and School 
of Dentistry), professional societies (e.g., in the U.S.: Geological Society of America, American Medical 
Association, and American Dental Association), and scholarly communication channels that newer, less 
established disciplines may be unable to maintain (Yan et al., 2013). The results can also be explained by 
the dependent relationship of applied science upon basic science: while basic science fields are more self-
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dependent, applied science fields tend to cite basic science fields (Narin, Pinski, & Gee, 1976; Boyack et 
al., 2014), or in Narin and colleagues’ words “[t]he basic research journals and basic research fields are 
highly influential: their citation-influence measures are significantly greater than the measures for the 
clinical journals and fields” (p. 43).  

Diachronically, based on the results on Shannon entropy, the trading practices of most disciplines are 
increasingly becoming more diversified (with the exception of Energy, Decision Sciences, and Health 
Professions), signifying that they are more inclined to import higher volumes of knowledge from a greater 
number of disciplines. The findings are somewhat different from Zitt and Cointet’s (2014) study in that a 
steady drop in variances of normalized impact and relative growth were found for the Web of Science 
discipline-level data from 1999 to 2008. The difference may be attributed to the “citing-side 
normalization” used in their study that weights citation links proportionally to the average outgoing links 
by a node. The normalization thus corrected the “absolute growth or the average impact over science… 
[and is] in contract with long-range analyses…which focus on volumes of publications and citations” (p. 
7). Historically, there was a tendency towards a unified science (Neurath, 1996). This tendency was 
largely driven by the unity of language (e.g., Hyland, 2004) and the unity of laws (e.g., Carnap, 1955). 
Recently, the need of the data-driven research may transform the research landscape. Data-drive research 
allows scientists and scholars to collaborate on the same data sets and apply their own expertise. This 
juxtaposition of expertise over data has progressively changed the characteristics of sciencescientists 
and scholars no longer need to collaborate with others who share the same expertise but team up with 
those with diversified expertise toward certain problem-solving (e.g., Wuchty, Jones, & Uzzi, 2007). This 
mode in turn facilitates more diversified tangible (i.e., publications and citations) and intangible (i.e., 
informal knowledge sharing) knowledge transfer. 

R&D expenditures and knowledge production 

UNESCO publishes economic indices that allow us to compare R&D expenditures with citation statistics. 
Table 4 lists the world total R&D expenditures in billions PPP$ for years 2002, 2007, and 2009. These 
three time points correspond to the three citation windows of this study: 2000/2002, 2006/2008, and 
2009/2011. 

Table 4. Global R&D expenditures and number of citations 

Year R&D expenditures 
(in billions PPP$)* 

Increase in 
percentage 

Citation window No. of subject-level 
citations 

Increase in 
percentage 

2002 787.7 - 2000/2002 1,623,863 - 
2007 1,155.4 46.68% 2006/2008 2,045,946 25.99% 
2009 1,276.9 10.52% 2009/2011 2,167,594 5.95% 

* PPP (Purchasing Power Parity) conversion factor (local currency per international $): World Bank; World Development 
Indicators, as of September 2011 and UNESCO Institute for Statistics (UIS) estimations. 

The R&D expenditures have increased by 46.68% from 2002 to 2007 and 10.52% from 2007 and 2009; in 
the meantime, the number of citations for all disciplines has increased by 25.99% from 2000/2002 to 
2006/2008 and 5.95% from 2006/2008 to 2009/2011. The increment of R&D expenditures is seemingly 
proportioned to the increment of citations. Here, we do not intend to make inaccurate causation inferences 
and we acknowledge the delay of R&D expenditures on actual knowledge creation. Nonetheless, the 
results do indicate that growth rates of R&D expenditures are commensurate with the growth rates of 
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knowledge production in the form of citations. The citations numbers in turn may be explained by the 
growing number of publications.  

At the discipline level, different disciplines exhibit varied “fundability” characteristics: while for some, 
funding is indispensable, but for the others, the importance of funding ranges from essential to desirable. 
In addition, the output of funded research may not relate directly to the investment inputs. Science and 
innovation maintain a nonlinear relationship in nature and thus the output of funded research can vary 
substantially between disciplines (Lane, 2009). This nonlinear feature calls for new data to characterize 
disciplinary differences and new methods to capture varied forms of knowledge production and transfer.  

While the statistics of global R&D expenditures are reported by UNESCO, detailed discipline-level 
investment data are only available for some countries, largely attributed to the varied science 
classification schemes that different countries adopted. This made it difficult to synthesize country-level 
numbers to the global level. As an alternative, in this study, discipline-level statistics of U.S. R&D 
expenditures at universities and colleges were used to proximate global statistics, because of U.S.’s 
highest share of R&D expenditures among all countries―30.63% as of 2009 (UNESCO, 2011) and also 
because of its comprehensive investments on all disciplines. One should be reminded that despite this 
effort, discrepancies may exist between the U.S. and the globe in disciplinary funding allocations.  

The U.S. Census Bureau reports R&D expenditures in the following disciplines: physical sciences, 
environmental sciences, mathematical sciences, computer sciences, life sciences, psychology, social 
sciences, engineering, and other sciences (U.S. Census Bureau, 2012). Some of them match the major 
subjects of this study and some match the top-level domains. For instance, environmental sciences, 
mathematical sciences, computer sciences, and engineering were reported separately with physical 
sciences in the Census Bureau statistics whereas they were all categorized into Physical Sciences in ASJC. 
Thus, for a fair comparison, incoming citations of the corresponding major subjects were excluded from 
the top-level domain of Physical sciences. We chose R&D expenditures reported at two time points: 2000 
and 2009 which correspond to the two citation windows of this study, as shown in Table 5. 

Table 5. U.S. R&D expenditures at universities and colleges (in million$) and number of citations for 
several disciplines  

Disciplines 2000 (2000/2002) 2009 (2009/2011) 
R&D Citations R&D Citations 

Physical sciences* 2,713 (10.63%) 340,259 (20.95%) 4,294 (9.28%) 586,874 (27.07%) 
Environmental sciences 1,766 (6.92%) 28,598 (1.76%) 2,940 (6.35%) 73,599 (3.40%) 
Mathematical sciences 342 (1.34%) 16,558 (1.02%) 553 (1.19%) 36,685 (1.69%) 
Computer sciences 877 (3.44%) 12,828 (0.79%) 1,592 (3.44%) 28,202 (1.30%) 
Life sciences** 17,471 (68.44%) 1,116,147 (68.73%) 32,791 (70.85%) 1,243,247 (57.36%) 
Psychology 517 (2.03%) 17,407 (1.07%) 979 (2.12%) 33,977 (1.57%) 
Social sciences*** 1,300 (5.09%) 33,991 (2.09%) 2,075 (4.48%) 65,791 (3.04%) 
Engineering 543 (2.13%) 36,954 (2.28%) 1,060 (2.29%) 80,802 (3.73%) 
Total 25,529 1,623,863 46,284 2,167,594 

* Excluding the incoming citations of Environmental science, Mathematics, Computer science, and Engineering. 
** Combining the incoming citations of Life Sciences and Health Sciences.  
*** Excluding the incoming citations of Psychology. 

Through this comparison, the following observations can be made. First, a few disciplines’ shares of 
citations exceeded their share of R&D expenditures, including physical sciences and engineering. In the 
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meantime, for environmental sciences and computer sciences, their shares of R&D expenditures exceeded 
their share of citations. Shares of citations of mathematics, life sciences, psychology, and social sciences 
roughly matched with their shares of R&D expenditures. Dynamically, shares of R&D expenditures of 
different disciplines remained relatively stable; the share of citations of life sciences, however, decreased 
from 68% to 57% while shares of other disciplines increased.  

The results presented here are part of a larger effort to understanding the impact of R&D investments on 
knowledge production and diffusion. In addition to knowledge production in the form of publications and 
citations, there are other intangible forms, such as training students and researchers and organizing 
workshops (e.g., Cohen, Nelson, & Walsh, 2002). To systematically evaluate the impact of R&D 
investments, one also needs to leverage its outcome on the market (e.g., new drugs and new tools been 
developed) as well as on the societal institutions of people’s day-to-day life (Lam, 2000).  

Conclusion 

This study has examined the patterns of disciplinary knowledge production and diffusion through a 
comprehensive citation data set of Scopus indexed journals. A three-step approach has been adopted: the 
first step has involved the examination of disciplines’ citation characteristics through scientific trading 
dimensions; the second step has analyzed citation flows between two disciplines; and the third step has 
used ego-centric citation networks to assess individual disciplines’ citation flow diversity through 
Shannon entropy.  

This study has found that except for General and Biochemistry, all other disciplines received more 
scientific impact during the past five citation windows; in particular, Chemical Engineering, Energy, and 
Environmental Science have the fastest growths. Measured through cited/citing ratios, Decision Sciences, 
Economics, Chemical Engineering, and Biochemistry are noticeable knowledge exporters. Meanwhile, 
most subjects retained high self-citation ratios, among which Medicine, Dentistry, and Earth and 
Planetary Sciences had the highest self-citation ratios (above 0.6). Through an investigation of 
disciplinary citation flows, the study has found that while weaker citation flows gained faster growths, 
more established citation flows are less susceptible to change. Disciplines such as Energy, Environmental 
Science, Chemistry, and Computer Science are the ones that strengthened their citation flows with other 
subjects.  

Measured through Shannon entropy, this study has revealed that Environmental Science, Engineering, 
Decision Sciences, and Arts and Humanities are the most diversified and interdisciplinary; Dentistry, 
Earth and Planetary Sciences, Medicine, Physics, and Veterinary, on the other hand, are the least 
diversified. Except for Computer Science, Energy, and Health Professions, all other subjects gained 
entropy and are thus committed to more interdisciplinary trading practices. Results from Shannon entropy 
have also suggested that although disciplines became more interdisciplinary-oriented at the subject-level, 
cross top-domain level knowledge transfer was less practiced. 

By matching the disciplinary citation data with R&D expenditures, the study has shown that the growth 
rates of disciplinary citations align with the growth rates of global R&D expenditures, thus providing 
evidences to support the impact of R&D expenditures on knowledge production.  
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The analytical units of this study include individual disciplines, pairs of disciplines, and ego-centric 
networks of disciplines. The next step in this direction will examine each discipline in the context of a 
flow network and using network theories and methods to capture the more latent “linked” aspect of 
disciplinary knowledge production and diffusion. Additionally, studies will also benefit from cross-
referencing data sources on science policy, research communities, and other social-technical factors to 
understand the mechanisms that may lead to the dynamics changes of disciplines.  
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