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1. INTRODUCTION

In unit testing, the class under test might exhibit com-
mon and special program behavior when it is exercised by
different test inputs. For example, intuitively a bounded-
stack class exhibits common behavior when the stack is nei-
ther empty nor full, but might exhibit some special behavior
when the stack is empty or full. Common and special test
inputs can be created to exercise some common and spe-
cial behavior of the class under test, respectively. Although
manually written unit tests for classes play an important
role in software development, they are often insufficient to
exercise some important common or special behavior of the
class: programmers often overlook some special or bound-
ary values and sometimes even fail to include some common
cases. The main complementary approach is to use one of
the automatic unit test generation tools to generate a large
number of test inputs to exercise a variety of behaviors of
the class. With a priori specifications, the executions of
these test inputs can be automatically verified. In addition,
among generated tests, common and special tests can be
identified based on specifications and then these identified
tests can be used to augment existing manual tests. How-
ever, in practice, specifications are often not written by pro-
grammers. Without a priori specifications, it is impractical
for programmers to manually inspect and verify the outputs
of such a large number of test executions. Consequently pro-
grammers do not have an efficient way to identify common
and special tests.

In this paper, we present a new approach for automatically
identifying special and common object-oriented unit tests
from automatically generated tests without requiring spec-
ifications. Programmers can inspect these identified tests
for verifying their correctness and understanding program
behavior. They can use these identified tests to augment
existing tests.

Our new approach is based on dynamically inferred pro-
gram properties, called statistical algebraic abstractions. Dif-
ferent from previous work on dynamic property inference [9,
14], statistical algebraic abstractions inferred by our ap-
proach are not necessarily universally true among all test
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executions; a statistical algebraic abstraction is associated
with the counts of its satisfying and violating instances dur-
ing test executions. The abstraction is an equation that ab-
stracts the program’s runtime behavior (usually describing
interactions among method calls); the equation is syntacti-
cally identical to an axiom in algebraic specifications [11].
We dynamically infer statistical algebraic abstractions by
instantiating a set of predefined abstraction templates with
test executions. We characterize a common property with a
statistical algebraic abstraction whose instances are mostly
satisfying instances and characterize a universal property
with a statistical algebraic abstraction whose instances are
all satisfying instances. Then, for each common property, we
sample and select a special test (violating instance) and a
common test (satisfying instance). For each universal prop-
erty, we sample and select a common test (satisfying in-
stance). Programmers can inspect both the selected tests
and their associated properties.

2. RELATED WORK

Our work is mainly related to three lines of work: abstrac-
tion generation (also called specification inference), statisti-
cal program analysis, and test selection.

2.1 Abstraction Generation

Ernst et al. [9] developed the Daikon tool to infer opera-
tional abstractions from test executions. Our abstraction in-
ference technique based on abstraction templates is inspired
by their use of grammars in abstraction inference. Their
abstractions are universal properties, whereas statistical al-
gebraic abstractions in our approach contain both universal
and common properties. Keeping track of statistical alge-
braic abstractions is more tractable than keeping track of
statistical operational abstractions, because the candidate
space of operational abstractions is much larger.

Henkel and Diwan developed a tool to infer algebraic spec-
ifications for a Java class [14]. Their tool generates a large
number of terms, which are method sequences, and evaluates
these terms to find equations, which are then generalized to
axioms. Since their technique does not rely on abstraction
templates, their technique is able to infer more types of ab-
stractions than the ones predefined in our approach. For
example, their technique can infer an equation abstraction
whose right hand side (RHS) contains a method call that



is not present in the left hand side (LHS). However, their
inferred abstractions are all universal properties, containing
no common properties. Their tool does not support condi-
tional abstractions.

2.2 Statistical Program Analysis

Different from the preceding abstraction inference tech-
niques, Ammons et al. infer protocol specifications for a
C application program interface by observing frequent in-
teraction patterns of method calls [1]. Their inferred pro-
tocol specifications are either common or universal proper-
ties. They identify those executions that violate the inferred
protocol specifications for inspection. Both their and our
approaches use statistical techniques to infer frequent be-
havior. Their approach operates on protocol specifications,
whereas our approach operates on algebraic specifications.
Their later work [2] uses concept analysis to automatically
group the violating executions into highly similar clusters.
They found that by examining clusters instead of individ-
ual executions, programmers can debug a specification with
less work. Our approach selects one representative test from
each subdomain defined by statistical algebraic abstractions,
instead of presenting all violating or satisfying tests to pro-
grammers. This can also reduce the inspection effort for a
similar reason.

Engler et al. [8] infer bugs by statically identifying incon-
sistencies from commonly observed behavior. We dynami-
cally identify special tests, which might expose bugs, based
on deviations from common properties. Liblit et al. [16]
use remote program sampling to collect dynamic informa-
tion of a program from executions experienced by end users.
They use statistical regression techniques to identify pred-
icates that are highly correlated with program failures. In
our approach, we use statistical inference to identify special
tests and common tests.

2.3 Test Sdection

In partition testing [17], a test input domain is divided
into subdomains based on some criteria, and then we can se-
lect one or more representative inputs from each subdomain.
Our approach is basically a type of partition testing. We di-
vide test input domain for a method-call pair or method call
into subdomains based on each inferred statistical algebraic
abstraction: satisfying tests and violating tests.

When a priori specifications are provided for a program,
Chang and Richardson use specification coverage criteria to
select a candidate set of test cases that exercise new as-
pects of the specification [4]. Given algebraic specifications
a priori, several testing tools [10, 3, 7, 15, 5] generate and
select a set of tests to exercise these specifications. Unlike
these black-box approaches, our approach does not require
specifications a priori.

Harder et al.’s operational difference approach [13], Han-
gal and Lam’s DIDUCE tool [12], and the operational viola-
tion approach in our previous work [20] select tests based on
a common rationale: selecting a test if the test exercises a
certain program behavior that is not exhibited by previously
executed tests. The approach in this paper is based on a dif-
ferent rationale: selecting a test as a special test if the test
exercises a certain program behavior that is not exhibited
by most other tests; selecting a test as a common test if the
test exercises a certain program behavior that is exhibited
by all or most other tests. Different from these previous ap-

public class LinkedList {
public LinkedList() {...}
public void add(int index, Object element) {...}
public boolean add(Object o) {...}
public boolean addAll(int index, Collection c) {...}
public void addFirst(Object o) {...}
public void addLast(Object o) {...}
public void clear() {...}
public Object remove(int index) {...}
public boolean remove(Object o) {...}
public Object removeFirst() {...}
public Object removeLast() {...}
public Object set(int index, Object element) {...}
public Object get(int index) {...}
public ListIterator listIterator(intindex) {...}
public Object getFirst() {...}

Figure 1: A LinkedList implementation

proaches, our approach is not sensitive to the order of the
executed tests. In addition, these three previous approaches
operates on inferred operational abstractions [9], whereas
our approach operates on inferred algebraic specifications.

Dickinson et al. [6] use clustering analysis to partition
executions based on structural profiles, and use sampling
techniques to select executions from clusters for observa-
tions. Their experimental results show that failures often
have unusual profiles that are revealed by cluster analysis.
Although our approach shares a similar rationale with their
approach, our approach operates on black-box algebraic ab-
stractions instead of structural behavior.

3. EXAMPLE

As an illustrating example, we use a nontrivial data struc-
ture: a LinkedList class, which is the implementation of
linked lists in the Java Collections Framework, being a part
of the standard Java libraries [18]. Figure 1 shows the dec-
larations of LinkedList’s public methods. LinkedList has 25
public methods, 321 noncomment, non-blank lines of code,
and 708 lines of code including comments and blank lines.
Given the bytecode of LinkedList, our approach automati-
cally generate a large set of tests (6777 tests); among these
generated tests, our approach identifies 29 special tests and
79 common tests. These identified tests are associated with
43 universal properties and 45 common properties.

4. APPROACH

Our new approach is based on statistical algebraic ab-
stractions. An algebraic abstraction is an equation that ab-
stracts a program’s runtime behavior. It is syntactically
identical to an axiom in algebraic specifications. For exam-
ple, two algebraic abstractions of LinkedList are

add(S, mO).retval == true and

index0f (add(S, i0_1, mi_1).state, m0_2).retval == iO_1
where the state of a method call’s receiver is treated as the
first method argument (but a constructor does not have a
receiver) and the .state and .retval expressions denote the
state of the receiver after the invocation and the result of
the invocation, respectively. We adopt the notation follow-
ing Henkel and Diwan [14].

An instance of an algebraic abstraction is a test that is
able to instantiate the left-hand side and right-hand side
of the equation in the algebraic abstraction. A satisfying
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instance of an algebraic abstraction is an instance that sat-
isfies the equation in the algebraic abstraction. A violating
instance of an algebraic abstraction is an instance that vi-
olates the equation in the algebraic abstraction. A statisti-
cal algebraic abstraction is an algebraic abstraction that is
associated with the counts of its satisfying and violating in-
stances. We dynamically infer statistical algebraic abstrac-
tions from test executions.

A common property is a statistical algebraic abstraction
whose instances are mostly satisfying instances (by default,
our approach sets the percentage threshold of satisfying in-
stances as 80%, which can be configured by the user). A uni-
versal property is a statistical algebraic abstraction whose
instances are all satisfying instances. A special test is a vi-
olating instance of a common property and a common test
is a satisfying instance of a common or universal property.
For each common property, we sample and select a special
test and a common test. For each universal property, we
also sample and select a common test.

When the underlying abstraction of a universal property
is a conditional abstraction (an abstraction whose LHS is
associated with a condition), the property is called a con-
ditional universal property. For example, a conditional uni-
versal property identified by our approach has 474 satisfying
counts:

set(add(S, i0_-1,m1_1).state, i0-2,m1_2).state
== add(S, i0_2,m1_2).state [where (i0-1==10_2)]
Special tests additionally include a satisfying instance of a
conditional universal property.

Figure 2 shows an overview of our approach. The input to
our approach is the bytecode of the (Java) class under test
and a set of algebraic abstraction templates pre-defined by
us; these templates encode common forms of axioms in alge-
braic specifications: equality relationships among two neigh-
boring method calls and single method calls (the details of
the templates are described in an accompanying technical
report [21]). The outputs of the approach are a set of com-
mon and special tests and their corresponding properties.

The approach comprises four steps: test generation, method-

call composition, statistical inference, and test identifica-
tion. The step of test generation first generates different
representative argument values for each public method of
the class, and then dynamically and iteratively invokes dif-
ferent method arguments on each non-equivalent receiver-

object state (our previous work [19] develops techniques for
determining object-state equivalence). The tests generated
in Iteration N have the method call length of N, which is the
number of method calls on the object under test after the
constructor method call. The step of method-call compo-
sition monitors and collects method executions to compose
two method calls m1 and m2 forming a method-call pair if
m1’s receiver-object state after invoking mi1 is equivalent to
m2’s receiver-object state before invoking m2. The composed
method-call pair is used in the step of statistical inference
as if the two method calls in the pair were invoked in a row
on the same receiver. The step of statistical inference uses
method-call pairs and single method calls to instantiate and
check against the abstraction templates. This step produces
a set of common or universal properties. The step of test
identification identifies common and special tests based on
these properties.

5. EVALUATION

We have developed a tool, called Sabicu, to prototype our
approach and applied the tool on different types of appli-
cations, especially those complex data structures. We de-
scribe our initial experience on several benchmarks of com-
plex data structures in this section. The full details of the
results have been posted on our project web'. The first and
second columns of Table 1 show the name of the benchmark
programs and the number of public methods used for test
generation and test identification. Most of these classes are
complex data structures that are used to evaluate our pre-
vious work on redundant-test detection [19].

We ran Sabicu on a Linux machine with a Pentium IV 2.8
GHz processor with 1 GB of RAM running Sun’s JDK 1.4.2.
In particular, we ran Sabicu on the benchmarks with three
different maximum iteration numbers: 3, 4, and 5. To avoid
taking too long during one iteration, we set a timeout of
five minutes for each iteration; if within five minutes Sabicu
could not finish generating and running tests to fully exer-
cise the new nonequivalent object states, we terminate the
test generation and execution within that iteration. We es-
timate the size of axiom space to explore based on the num-
ber of methods and the number of abstraction templates.
The third column of Table 1 shows our estimation. The
fourth column shows the maximum iteration number where
the data in the same row are produced. The fifth column
shows the number of axiom candidates (statistical abstrac-
tions) that our prototype considered and kept in memory
during test generation and execution.

We have observed that the number of axiom candidates is
not very large and they often remain stable across iterations.
The sixth column shows the real time (in seconds) spent on
test generation, execution, and identification. We have ob-
served that for relatively large programs the real time grows
by a factor of three to five when setting one more maximum
iteration. Columns 7, 8, and 9 show the number of univer-
sal properties, conditional universal properties, and common
properties, respectively. The last four columns show the
number of all generated tests, identified special tests, iden-
tified common tests, and tests identified to be both special
and common with respect to different properties, respec-
tively. We have observed that a higher maximum iteration
number (more tests) can falsify universal properties inferred

"http://www.cs.washington.edu/homes/taoxie /sabicu/



Table 1: Quantitative results for identifying special and common tests

axiom axioms time properties tests
subject meth | space | iter | consd (sec) univ | c-univ | common | generated | special | common | both
BinSearchTree 4 240 3 75 0.93 6 7 7 91 6 14 3
4 75 1.32 6 7 [§ 136 5 14 3
5 75 1.32 6 7 6 136 5 14 3
BinomialHeap 12 2364 3 501 44.36 20 3 52 5272 42 57 1
4 501 | 119.78 17 4 51 12440 44 56 1
5 502 | 371.23 16 4 53 19888 43 54 1
FibonacciHeap 9 1242 3 287 1.97 21 5 45 173 32 53 4
4 287 3.59 18 5 53 341 37 55 4
5 287 7.02 17 4 56 677 39 55 4
HashMap 13 2022 3 381 16.25 73 8 19 2213 15 79 5
4 381 65.11 73 8 21 7533 17 86 9
5 381 | 157.59 73 8 22 15345 18 86 10
HashSet 8 792 3 211 1.85 39 11 17 157 15 45 7
4 211 2.65 39 11 16 235 14 46 9
5 211 3.12 39 11 18 261 15 47 10
LinkedList 21 6048 3 796 6.80 44 14 21 729 20 68 3
4 797 21.88 43 14 33 2241 30 80 9
5 797 76.71 43 14 31 6777 29 79 8
SortedList 24 7827 3 877 10.19 45 10 24 820 21 70 4
4 878 33.14 44 10 23 2521 20 70 3
5 878 | 110.78 44 9 31 7624 23 74 3
TreeMap 15 1968 3 409 20.31 74 8 20 2911 16 81 [§
4 409 79.94 74 8 21 9421 17 87 9
5 409 | 314.46 74 8 20 15991 16 87 9
IntStack 4 252 3 33 0.57 2 0 2 76 2 3 1
4 33 1.21 2 0 5 241 4 5 2
5 33 2.84 2 0 5 766 4 5 2
UBStack 10 1077 3 87 0.78 11 1 6 183 6 17 1
4 87 1.01 11 1 [§ 274 6 17 3
5 87 1.23 11 1 5 365 5 16 1

from earlier iterations but usually cannot produce more uni-
versal properties because the maximum iteration number of
three shall be able to instantiate all possible universal prop-
erties (described by our abstraction templates). However,
the number of conditional universal properties or common
properties can be increased or decreased when we increase
the maximum iteration number. On one hand, a universal
property can be demoted to be common properties or con-
ditional universal properties (a universal property can be
demoted to a conditional one because we do not infer or
report a conditional universal property that is inferred by
a universal property). On the other hand, a property does
not have a high enough number of satisfying instances can
be promoted to be a common property when more satisfying
instances are generated in a higher iteration. Although the
number of all generated tests increases over iterations, the
number of identified special and common tests remains rela-
tively manageable; although the absolute number of identi-
fied tests is relatively high for large benchmarks, the average
number of identified tests for each method is not high.

We manually inspect identified tests and their associated
properties; we especially focus on special tests. Because of
space limit, we will describe only several interesting iden-
tified tests that we observed during inspection in this sec-
tion. One common property for LinkedList has 117 satisfy-
ing count and 3 violating count:

removeLast(addFirst(S, m0_1).state).state

== addFirst(removeLast(S).state, m0_1).state
In the common test of this property, the LinkedList state

S in the abstraction holds at least one element. But in the
special test, S holds no element.

Another common property for LinkedList has 315 satisfy-
ing count and 45 violating count:

remove(removeLast(S).state, m0_2).state ==

removeLast(remove(S, m0_2).state).state
In the common test of this property, the LinkedList state S
in the abstraction holds only one element (being m0_-2). But
in the special test, S holds two elements (the last element
being m0_2).

One common property for UBStack, a bounded stack stor-
ing unique elements, has has 47 satisfying count and 6 vio-
lating count:

isMember(push(S, i0_1).state, i0_2).retval == true

[where (10-1==i0_2)]

This property shows the bounded feature of the stack im-
plementation; if a stack is unbounded, this property would
be a universal property. In the special test for this property,
the UBStack state S is already full; pushing an element (that
does not exist in the stack already) on a full stack does not
change the stack state. Invoking isMember with the same
element as the argument does not get a true return value.

We have found that conditional universal properties are
not too many but often indicate interesting and important
interactions between two methods. Indeed, even without us-
ing our approach, programmers can use heuristics for gener-
ating tests to exercise two neighboring method calls whose
arguments share the same type. However, our approach can
help find most interesting call pairs among them automati-



cally. We also found that some universal properties are not
really universally satisfiable because the generated tests are
not sufficient enough to violate them. However, we cannot
afford to generate exhaustive tests with higher bound (re-
flected by the maximum iteration number). In future work,
we plan to use universal properties or conditional universal
properties to guide generating a narrowed set of tests for
these properties instead of a bounded exhaustive set.

Although we manually inspected identified tests and found
many interesting behaviors exposed by them, it is still un-
clear how well these identified tests can detect faults. In
future work, we plan to do experiments to assess the fault
detection capability of identified tests comparing to all the
generated tests or those tests selected using other test selec-
tion techniques.

6. CONCLUSION

We have proposed a new approach for automatically iden-
tifying special and common tests out of a large number of
automatically generated tests, without requiring specifica-
tions. The approach is based on statistically true (not nec-
essarily universally true) program properties, called statis-
tical algebraic abstractions. We develop a set of abstrac-
tion templates, which we can instantiate to form commonly
seen axioms in algebraic specifications. Based on the pre-
defined abstraction templates, we perform a statistical in-
ference on collected method calls and method-call pairs to
obtain statistical algebraic abstractions. We develop a way
to characterize special and common tests based on statis-
tical algebraic abstractions. We sample and select special
tests and common tests together with their associated ab-
stractions for inspection. Our initial evaluation has shown
that those tests and properties identified by our approach
exposed cases that shall be interesting for programmers to
inspect and augment to the existing tests.
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