"NOTICE: this is the author’s version of a work that was adeédor publication in Com-
puters in Biology and Medicine. Changes resulting from thblighing process, such as
peer review, editing, corrections, structural formatfiagd other quality control mech-
anisms may not be reflected in this document. Changes may bemsme made to this
work since it was submitted for publication. A definitive siem was subsequently pubt
lished in: S. Szénasi, "Segmentation of colon tissue $ampages using multiple graph-
ics accelerators”, Computers in Biology and Medicine (203l. 51, pp. 93-103, DOI
10.101@j.compbiomed.2014.05.002".

Segmentation of Colon Tissue Sample Images Using Multiple
Graphics Accelerators

Sandor Szenasi

2John von Neumann Faculty of Informati€buda University, 98 Bécsi (t, H-1034 Budapest, Hungary

Abstract

Nowadays, processing medical images is increasingly domeigh using digital imagery and
custom software solutions. The distributed algorithm enésd in this paper is used to detect
special tissue parts, the nuclei on haematoxylin and edainesl colon tissue sample images.
The main aim of this work is the development of a new datail@ragion growing algorithm
that can be implemented even in an environment using meltigleo accelerators. This new
method has three levels of parallelism: a) the parallebregrowing itself b) starting more region
growing in the device ¢) using more than one accelerator. $&ehe split-and-merge technique
based on our already existing data-parallel cell nucleirgagation algorithm extended with
a fast, backtracking-based, non-overlapping cell filtethod. This extension does not cause
significant degradation of the accuracy; the results aretigedly the same as those of the original
sequential region growing method. However, as expectadgunore devices usually means
less time is needed to process the tissue image; in the cdbe obnfiguration of one central
processing unit and two graphics cards, the average speedabout 4-6X. The implemented
algorithm has the additional advantage @icéently processing very large images with high
memory requirements.

Keywords: Medical image segmentation, Cell nuclei detection, Datalfs algorithm,
Distributed algorithm, GPGPU, CUDA

PACS:42.30.Tz, 87.57.nm

2000 MSC65D18

URL:E-mail: szenasi.sandor@nik.uni-obuda.hu / Phone num.: +361666551 (Sandor Szénasi)

Preprint submitted to Computers in Biology and Medicine July 10, 2014

1. Introduction

Nowadays, digital microscopes are becoming increasingpufar among pathologists. The
processing of microscopic tissue images and the segmemtdtiissue components are now done
through digital imagery and special immunodiagnosticvgafe products [1]. These are fast and
accurate products and can serve several additional furs;tike remote access, archiving [2, 3],
searching and tagging [4], semi-automatic diagnostic6,[%], registration [8], computer-aided
tissue engineering [9] etc. This kind of processiffig@rs a very promising way of usingftérent
segmentation techniques with the images received; this thaydiferent components of the
tissues can be separateftketively. Appropriately, precise recognition of the tiestomponents
would provide a safe background for automated status arafshe examined patients, or at
least promote the work of pathologists with this pre-preoes

Our work focuses on the segmentation of images containieghatoxylin and eosin (HE)
stained colon tissue samples. There are several procettuigsntify the main structures in
these images and many are based on a reliable cell nucleitidetenethod. There are several
image processing algorithms for this purpose [10, 11, 1P, A& some factors could increase
the challenge. The size of the images can easily reach 10@byits; therefore, the image
processing speed plays an important factor.

In this paper, after the presentation of the technical bamkud (related work, evaluation
method, etc.), we propose a new cell nuclei segmentatiaritign implemented in a heteroge-
neous environment. This method uses all the available GRthesystem for the most com-
putationally intensive tasks (data-parallel cell nuckgmentation), and all the available CPU
cores for the less computationally intensive additionsk$a(splitting and merging images, and
controlling the GPUS).

2. Evaluation of cell nuclei detection methods

2.1. Accuracy of nuclei segmentation algorithms

For comparison, we have to evaluate the accuracy of tfierdint algorithms. We have 39
colon tissue sample images manually annotated by qualiidtbppgists (we will refer to these
as the Gold Standard slides), therefore we can compare tpetsiof the algorithms to these
results. There are several available evaluation methadhife purpose, but most of them are
not suitable for this task, therefore we designed a new naetlogy. We have to know the exact
position and shape of cell nuclei for further diagnosis psgs, therefore the basic object-level
comparison methods are not applicable (for example, justpewe the number of cell nuclei,
etc.); we need a pixel-level comparison method. The widelduconfusion matrix gives very
clear and easily understandable results, based on Equation

TP+TN

A - 1
Uy T TN+ FP+ EN @

where

e TP: Number of true-positive pixels (the pixel is correctlgssified as part of a nucleus in
both the reference result set and in the test result set).

e TN: Number of true-negative pixels (the pixel is correctlgssified as not part of a cell
nucleus).

2

e FP: Number of false-positive pixels (in the test result, pireel is classified as part of a
nucleus, but in the reference result it is not).

¢ FN: Number of false-negative pixels (the pixel is incorhgctassified as not part of a cell
nucleus).

However, this pixel-level evaluation itself will not givesperfect results, because during the
segmentation our task is not only to determine whether al pigkongs to a nucleus or not,
we have to identify the closed nuclei objects themselves. eikample, in the case of false-
negative hits, the pixel-level evaluation cannot indidab& many nuclei the algorithm misses
(for diagnostic purposes, it really matters whether we misly one big nucleus, or a lot of
small nuclei). Another problem can be when there are sesarall nuclei in the reference slide,
but the algorithm identifies them as one large nucleus. kdhse, the pixel-level comparison
indicates relatively small errors; however, this can be/\mportant information for detecting
malicious cells.

Our specialized measurement number is not based only onixaely-pixel comparison;
instead it starts by matching the cell nuclei together inrétierence and the test results. One cell
nucleus from the reference result set can only have one imgtckll nucleus in the test result
set and vice versa. After matching the cell nuclei, we canpamathe paired elements using the
confusion matrix. There are some other improvements: farmgpte, we use some weighting in
the case of false-positive and false-negative pixels basdtie distance from the nearest valid
pixel, which is important for the appropriate results né&rlorders of the nuclei.

The implementation of this evaluation method raises séygoblems. The pairing of the
test-reference nuclei is a very resource-consuming stehgicase of several overlapping nuclei,
the number of valid pairings can be billions); therefore ge a backtracking-based method to
find the optimal result [14]. In this paper, we will use thisamation method for every task
where we need to check the accuracy of the nuclei detectiymmitim (evaluation of algorithms,
testing, parameter optimizing, etc.).

2.2. Comparison of nuclei detection methods

The main purpose of these algorithms is the same: we havéett fiee pixels of the sample,
which could belong to any nucleus. The first thought woulddase the colours of the pixels
for this separation, but in practice, this causes mafiicdities. In the case of a specific image,
we can achieve good results because we can easily teachatpepr whether a given colour
represents a nucleus pixel or not. However, our experiestuas that the colours of the images
pre-processed by filerent labs are significantlyfiiérent. This problem can be solved with some
profile files (one profile for each lab), since we can transfathimages into a standardized
colour space. However, in practice, it turned out that tleeesignificant dferences between
results from the same laboratories as well. Even if the saroks and materials are used, a
different amount of stain and processing time can cau$ereint colours (in some cases, the
nuclei are very strong dark areas, but in the case of some iotlagies, these are significantly
less contrasting).

There are various automatic threshold based techniqued/this problem. Several papers
deal with segmentations using the K-means procedure [1aizhwproduces very quickly and
with impressive results. The main limitation of this methedhe insdficient accuracy [16].
Further options are the texture based methods [17] and ccolastering [18]. It is easy to
achieve the quick results initially with moderate accurdmyt further development is generally

3

impossible. Nevertheless, it is worth considering theshrigues as they are quite flexible in
regards to various staining conditions. Therefore, thesequures can be used for fast pre-
processing.

Region growing is a more sophisticated technique [19]. Thibecause we can exactly
define and fine-tune the iteration steps by choosing an arpifithess function and stopping
condition. Both of these may consider the colour of the gixéie environmental conditions,
the size of the increased region, their position, etc. Aaoiimportant advantage of the region
growing approach is that it provides information not onlpabthe individual pixels (whether a
given pixel belongs to a cell nucleus or not), but it givesadetl information about the whole
cell nuclei objects (the result of the region growing is adikcell nuclei). This information is
essential by itself for the diagnosis (number of nuclei,sigrof nuclei, etc.), and it is useful for
the further segmentation of the image (glands, surfacéelpim, etc.).

However, region growing has some disadvantages as wedlt, Hie biggest problem is that
this method is rather slow. The process is slow to the extettpractical use seems almost
impossible, because the segmentation of large images X8192 pixels size or even greater)
containing a moderate number of nuclei may require up to aoe to complete. However, be-
cause the processfers good accuracy, it is definitely worth dealing with thiawlback, though,
we have tried to speed up the process as much as possibletitiss of accuracy). For the
implementation, we use the graphics hardware, becauseses in similar projects with good
results [20, 21].

3. Cell detection with data parallel region growing

3.1. Parallel region growing

The implemented region growing algorithm iterates theofwlhg three steps until one of the
stopping conditions is met. Due to space limitations, tlaiggy contains only a brief description
of parallel region growing. Detailed introductions can barid in [22].

1. It checks the four possible directions in which the contan be expanded. In case of the
first iteration, this means the four neighbours of the sigrioint (seed point), in the latter
iterations the pixels around the lastly accepted contourtgeee below). We can check
all directions at the same time; therefore, four threadsnéxa the diferent neighbours,
whether they are suitable for further expansion or not.

2. Inthe next step, all contour points are evaluated to @dtie direction in which the region
should be expanded. The algorithm evaluates a fithess émiti every point. Unfortu-
nately, some parameters of this fithess function changesangertion of every new point
(centre of the region, average intensity of the region).e8o, they have to be re-calculated
in every iteration for every contour point. However, thisaisvell parallelizable process;
every thread calculates the fitness of a single contour poith&ll threads execute the same
code on a dferent data. This is an ideal data-parallel task and is eabtaiin the GPGPU
(General-Purpose Computing on Graphics Processing #2813 [

3. Atthe end of each iteration, the algorithm selects theawompoint with the highest fitness
value. It can use the "atomicMax” function of the GPGPU to méhe threads calculate
the highest fitness. This point will expand the region in thgtiteration.

The iteration goes until the region reaches the maximum sibéch is given by a parameter.
After each iteration, a region level fitness function is adsaluated based on the intensity dif-
ferences between the inner and outer contour of the regrahttee circularity of the candidate
region. Finally, the result of the region growing functiartlie state where the maximum fitness
was reached (after each iteration it has stored the actgiairéevel fitness value in an array).

3.2. GPGPU implementation

As visible in the pseudo code (see Algorithm 1), the numbehfads is equal to the size
of the contour. This number is usually less than 500; theegfbwe want to utilize the whole
processing power of the GPGPU, we need to start more thre@ldis. is possible if we use
a higher level of parallelism, and execute more than oneregiowing at the same time (in
separate GPU blocks). The adjacent seed points can caldermgy since the parallelized search
of those can result in overlapping cell nuclei, which is wegatable. Fortunately, the maximum
radius of a cell nucleus is known (it is an input parametehefdearch procedure, callBgax).
Hence, we can presume that searches started from two or medepints (where distances
between these points are more thanRyax) can be considered as independent searches and
can be launched in a parallelized way. Using this technigueecan use thousands of threads,
leading to a very high GPU performance.

The results of this new implementation are practically #iaes as for the original one, there-
fore the accuracy is the same. We ran several teststereint images using the CPU implemen-
tation (Intel Core-i5 2400 processor, with four cores) dmel GPU implementation (Gigabyte
GTX580, with 480 cores). The third and fourth columns of ®ablshow the run-times. These
depend heavily on the attributes of the tissue sample imgige, (humber of nuclei, etc.), there-
fore it would be better to use a relative measurement uni¢ Uit we used was that we calcu-
lated how long it took relatively to process one pixel of thrge. The next two columns show
these relative values, and the last column contains tiierdnce between the CPU and the GPU
run-times. As can be seen, the data-parallel version idlysue to three times faster than the
original one. As it is also visible, the GPU implementatiaveg better results for large images.
When using images of 1024x1024, 2048x2048 and 4096x40%gspithe average relative run-
times are 0.0150.0090.008 mgpixel, respectively; meanwhile, the same values with th&)CP
implementation are 0.028.0340.029 mgpixel, respectively.

3.3. Parameter optimization

The region growing algorithm prepared this way has sevexameters, and it is very sen-
sitive to the appropriate settings. Fine-tuning of thesasismportant as the previously men-
tioned speed increase. We have 27 mutually independentnptees (details of the flerent
pre-processing image filters, maximal contrast length afldhcicleus candidate size, parame-
ters of intensity contrast dimensions, etc.) with predefiaeget sets, and our aim is to search for
a set of parameters that gives the best possible accuraeytdihe large number of parameters
and their reasonably large target set, defining the valuesially seems hopeless, so we have
developed an evolutionary algorithm to find the optimal esluThis evolution-based algorithm
was used to successfully determine a set of significantliebeairameters than the manually
adjusted ones.

Briefly, the main attributes of the genetic algorithm usedave

e Representation of chromosomes: We stored 27 genes insideomasome, where ev-
ery gene actually represents one of the region growing petens)y Every parameter is
5

separately encoded and the functionality of th@edént genes does not depend on their
location inside the chromosome.

¢ Initial generation of genetic algorithm: The first genavativas generated by randomly
generated chromosomes. Some of the parameters naturadlyupper and lower bounds
(cell nuclei size, cell nuclei radius, cell nuclei circutgraverage intensity, etc.). To de-
termine these limits, we have done some statistical arsatysithe annotated cell nuclei
of the already presented Gold Standard slides. For examggarding the sizes, 99.5%
of the cell nuclei are between 34 and 882 pixels. Based om tlesslilts, the actual values
of genes were chosen using Gaussian distribution withisetlrervals. Some of the pa-
rameters are downright technical; in these cases we usegnaem numbers between the
technically feasible intervals.

¢ Implementing selection operator: For parent selectionuaad the well-known roulette
wheel method where every chromosome has a slot that is sippdionally according
to its fitness value, based on Equation 2 (wherés the probability of selecting th
chromosomeFy is the fitness value for thid" chromosome, anMin(F) is the smallest
fitness value for the generation).

F, - Min(F)

P = S (P Min(F))

(2)

¢ Implementing crossover operation: We used uniform crassevhere we combine whole
genes from the previously selected parents. For every geramdom number determines
which parent’s gene is inherited. Genes from the parent wigher fithess value have a
proportionally higher probability of being inherited.

¢ Implementing mutation operator: The probability of a miatais 10%, and the size of the
mutation can be small, medium-sized or large (with a 60%, 830%0% chance, respec-
tively). The exact values of these mutations cannot be d&fina general form, because
the values of the parameters are verffatient. Therefore every parameter has its own
mutation range.

We started the genetic algorithm with 3000 chromosomesdiiritial generation, and 300 chro-
mosomes in every following generation. Every parametenasttested against 11 representative
image tissues. After 440 generations (this took approx83@drking hours), the system cannot
give better results, therefore we stopped the search. T$teabeuracy reached at 83.6%, which
is significantly better than the accuracy of the alreadytiyggmanually optimized) parameter
set (78.1%) [24, 25].

4. Using multiple GPGPUs

4.1. Naive implementation

To gain maximal performance, it would be better to use maaa tine graphics card [26]. We
have developed two protocols for multi-GPGPU operatiome flrst is based on the requirement
that we need the same result as with the single GPGPU verdibis is possible when the
main process itself remains unchanged. Only the previougigtioned independent parts are
expanded, so that they are processed at the same time bylponebut all GPUs.

6

This raises many problems. Fundamentally, this is becéies8 PGPUs work in independent
memory areas. The trivial solution for this problem wouldebiill synchronization after every
processing step, which makes a full copy between the indiEpgmrmemory areas. The naive
implementation works as follows:

1. The seed point search algorithm searches for the poits fhich the region growings
can be started.

2. Because the region growings that start from these poiatsanpletely independent, they
can be distributed in any way among the available GPGPUs.

3. We can start as many blocks in each GPGPU as the numberdpe@ds that the given
GPGPU has.

4. All GPGPUs copy the processed memory regions into theagimiemory. Thanks to the
seed point selection, all nuclei currently found are quateffom each other. Therefore,
there are not any overlapping areas in thiéedent GPGPUs. Thus, we do not expect any
memory transfer conflicts.

5. Aftereach GPGPU is done, they have to wait on each othegasjlobal synchronization.
6. All GPGPUs refresh their private memory region using taedrom the global memory.

7. Then, the next iteration can be started.

This method is easy to implement, but tHeeetiveness raises a number of questions. The biggest
problem is that quite a large amount of data exchange is sagesThis is because all of the
GPGPUs store the whole image, so that during the update sgoak of them have to transfer
all changed data from the other devices. The copy itself atba solved ficiently, because
the detected nuclei candidates are not placed in a singlégoons area (and the shapes of
these nuclei are unspecified). Therefore, the best soligioa copy lists of detected points
(additionally, it makes it more éficult that the region growing use several auxiliary images, s
we have to copy more bytes in case of one pixel).

This method is easy to implement; however due to the largebenimf memory operations,
it is expected to be correspondingly much slower than the version (details can be found in
our previous article [27]).

4.2. Split-and-merge method

To achieve the fastest possible solution, we have to proasdgreat independence for the
GPGPUs as possible. To this end, another option may be tdysidiyide the whole image into
smaller slices (tiles) and to distribute these betweenéheds. Once processing is complete, we
have to concatenate the results. The well-known name optiisedure is the split-and-merge
method [28]. There may be problems near the edges of imageselran use several techniques
to manage the overlaying parts.

We should ensure that the region growings started at the efddpe tiles do not fiect the
results of the region growings started iftdrent GPGPUs. Fortunately, this is easily met because
we know the maximum radius of any cell nucleBax). To determine this value, we can use
the annotated cell nuclei of the Gold Standard images. We Hawe this earlier, in the phase
of preparing initial generation for the parameter optimigigenetic algorithm. Based on the

7

processing of 7889, we set the valueRpfax to 30 pixels (in fact, there was one larger nucleus,
whose radius was 31.9 pixels, but using this parameter vakreases the number of false-
positive hits, therefore it is better to use the 30 pixelstim

Hence, any two region growings can be started in parall¢lafdistance between the seed
points is at least 4 Ruax. Therefore we only have to split the entire image into smadieo-
images (as large as acceptable for the GPGPUSs) usiigvhx pixels wide overlapping areas.
This area will be important later in the merge phase, as #isensure that no cell nuclei start
from non-overlapping areas of one GPGPU that has pixel€intim-overlapping area of another
GPGPU.

The main steps of the algorithm:

1. Division of the whole image based on the previously mewiboverlapping technique and
sending these image parts to the GPGPUs.

2. Execution of the original region growing algorithm in &PGPUs (processing all accept-
able seed points).

3. Copying the processed memory areas into the global merbiy is not an independent
task for the GPGPUs, because the overlapping areas carircomtalapping cell nuclei
(and based on the processing order of the GPGPUSs, thesampied results may be
different).

4. Filtering of the cell nuclei candidates. In the next step lmave to select some of the
remaining nuclei candidates, based on the following rulg¢shere must not be any over-
lapping nucleiin the result, and 2) the accuracy of thisltesust be the maximal available
accuracy.

The disadvantage of the designed algorithm is that thetsesdy no longer be identical to the
results provided by the traditional sequential algoritfaring the selection of non-overlapping
cell nuclei, we have to reject certain nuclei candidatesrédeer, the remaining accepted can-
didates may dfer from the sequential result. However, it is important tterthat this does not
mean that the new procedure has less precision. This onlgsrbat the result may be another
acceptable solution.

However, this approach promises several advantages. Fquoposes, the most important
benefit is the expected speed-up of processing. There angebrenization steps between the
GPGPUs. Therefore, all devices can work at their peak poWegre are some additional costs
(more than one GPGPU process the same overlapping areae@edghof the merge phase);
however, these are not significant.

Another benefit of this method (and that is the reason why vipbament this), is the possibil-
ity to process the input image by smaller distinct partss liiportant because the high memory
requirementis a huge disadvantage of the region growing flilhsized source images are quite
large (more than 200MB by image), and during the processugral copies are needed (mod-
ified by some filters). This all leads to the inability to usaditional region growing for these
full-sized images. There is not enough memory for the eintigge and the copies (especially
in the GPGPU memory). Compared to the previous procedusentathod can also be used to
solve this problem. As the processing of each of the sub-@magcompletely independent, these
are executable in any order (one-by-one or parallel). Asaltgn case of large images and lim-
ited resources, region growing is also applicable. Forfahese reasons, we have implemented
this version of parallel region growing and have done sdtests with this application.

8

5. Implementation of the split-and-merge method

The method itself consists of two main parts, the divisiod e merge. In the first step, we
have to decompose the whole image into smaller parts (witthesoverlapping areas), and we
can process these through the GPGPUSs. In the next step, wedprepare the final solution by
merging the results of the separate smaller images.

5.1. The split phase

The split phase contains two steps: the cutting up phasethancell nuclei detection phase.
The CPU processes the cutting up. The input is the wholeetisample image and the output
represents the overlapping parts. This is a simple operatie only question is the size of the
sub images and the width of the overlapping section.

The size of the tiles must be as large as possible. We havelsantieare limitations because
we have to store about ten copies of the image (several iar$adf the same image using filters
for the seed point search, the region growing, score calounlaetc.). We need fast access to
the pixels; therefore, we cannot use a compression methedcd{ we can easily calculate the
memory requirements. We did several tests and the 2048x2i34& size looks like the best
choice. Itis not too large, so we can store the images in gdghics cards (with 1GB internal
memory or less), but it is large enough for optimal proceséine ratio of the overlapping and the
non-overlapping part is ideal). If we use smaller tilesntlaee can use more parallel processing
units, but in practice, we usually work with input images 848192 pixels, only two GPGPUs,
and one CPU. Therefore, the tile size mentioned above igptaiuie.

The next required parameter is the width of the overlapped &ee Figure 1). It is worth
choosing it as narrow as possible because this will causelesglapping cell nuclei candidates.
We know the maximum radius of a cell nucled&ax = 30 pixels) and it is obvious that two
region growings that start from at least a Byax distance cannot have anffect on each other.
Therefore, we use 120 pixel wide overlapping areas.

The CPU creates all the required tiles and save them as seffidea (in the future we can
optimize this to use memory to memory transfers). The next & the nuclei detection for all
images. For this, we have to distribute the available tiltsvben the processing units. We have
implemented a scheduler based on the common producerfoengattern [29]. This pattern
is used in order to handle multiple client requests simeltarsly. There are two main roles:
those that produce data and those that consume the datacpthdData queues are used to
communicate between the participants. In the current plesdave only one producer. But,
in the future, we would like to improve the implemented syst® create a fully distributed
architecture - a dedicated cell nuclei detection clustengomers) where the client applications
can send the input images (producers).

Technically, the implementation goes as follows: afterdiog the input tissue image, an
algorithm starts to partition it into smaller tiles accarglito the above and puts these slides into
a processing queue. In the meantime, several processasnaiag (one for all GPUs and one
for the CPU) and waiting for the input in the queue. Each pse@ets one task from the queue
and runs the already implemented region growing. The sdbelistens to the task completion
signals and when each is finished, it starts the next stepménging of the intermediate results.

5.2. The merge phase

In the merge phase, we have to merge the intermediate ra@solthe final result. The input
is the set of the tiles and lists containing the detecteduallei candidates. There can be nuclei
9

in the overlapping area; therefore, we cannot merge theamdgectly. We have to handle all
nuclei as separate objects and make a decision to keep #emicleus or reject it. The rules of
the merge algorithm are the following:

1. Processing the non-overlapping regions: We can accepéthuclei whose enlargement
did not start from an overlapping area, without any furthegaks. It is obvious that the
distance of the seed points must be at leaf®gax and therefore these nuclei cannot meet
in the most unfortunate cases. So these nuclei can be haaslliedlependent from the
others. Hence, these are immediately acceptable (see @rygoed "Type b” in Figure 1).

2. Processing overlapping regions: We need some furtharkehia these cases. Usually
there are several nuclei which are in the overlapping ar¢atber the nuclei detection
these are not overlapped with others from other tiles (sgp€T” in Figure 1). In these
cases, we can simply accept these nuclei. However, we nesel additional calculations
if there are some nuclei candidates fronfelient tiles overlapping each other (see "Type
d” in Figure 1). If the pixels of these nuclei are perfectlgidical (this is the ideal case),
then we have to accept one of them and reject the other. Wmifately, in most cases
these nuclei partially overlap each other and in these casdsave to decide which one
to accept and which one to reject. This decision is commitatly the fact that in several
cases we have not just two but three or more overlapping nuoleractice, these nuclei
often form a long chain and it is filicult to decide which ones to accept.

In the latter case, there can be thousands of overlappidgintiiberefore, we have implemented
a backtracking based solution. First, we have to collecoadirlapping nuclei and execute a
clustering procedure to find the sets of nuclei in which attlailihave someféect on each other.
We can represent this problem as a graph where the vertepeseait the nuclei and there is
an edge between two vertexes if the corresponding nuclelagveach other. In this problem
space, our task is a classical component search. There\aglkelustering techniques; we
use a modified version of the well-known Kruskal algorithr@][3In the first step, we create
several sets where each vertex in the graph is in a sepatatsfs this, we start a loop and in
each iteration we look at the edges continuously. If thel@nisedge connecting two fiierent
components, we merge them. After each iteration, the réntatomponents represent sets of
cell nuclei in which there is a way across the overlappingises between every nucleus.

After that, we have to sort out one set of nuclei from eachtehis which there are not any
overlapping cell nuclei and the accuracy of the set is makimlaere the accuracy of the set is
the aggregate value of the accuracy of all nuclei in the s&t Esgure 2).

We have designed a score function to evaluate the nucleiaated. The evaluation is based
on the size (in pixels), radius, and circularity of the nusleTo determine the appropriate weight-
ing factors, we do an examination of the size, radius, aralitgrity of all nuclei in the already
presented Gold Standard slides (colon tissue sample inmag@sally annotated by pathologists).
We have examined all nuclei in these images and calculatedalues of size (Equation 3), ra-
dius (Equation 4) and circularity (Equation 5)) for eachd dave drawn the distribution into 100
equally sized intervals where every interval has the falhgwalues:

number of nuclei in the' size interval

Teidi] = :
sizd] number of nuclei

3)

10

number of nuclei in théfiradius interval
number of nuclei

Tradius[i] = (4)

number of nuclei in the'i circularity interval
number of nuclei

(5)

As expected, these values confirm the Gaussian distributilerassume that the detected objects
are as more like nucleus as many other nuclei exist with amphrameters. Therefore, we
calculate this probability according to the following (Edion 6) (in the future we will replace
this method with a fuzzy [31] based one):

S coréX) = Wsize* Tsizd Xsizd + Wradius * Tradius] Xradiug] + Wcircularity * Tcircularity[Xcircularity] (6)

Tcircularity[i] =

where
e X:Nucleus candidate.
o Wsize Wradius, Weircutarity: VWeighting factors for size, radius and circularity.
o Tsize Tradius Tcircularity: Density tables for size, radius and circularity.
® Xsize Xradius, Xcircularity: Size, radius and circularity of nucleus X.

We can use this score value to evaluate one nucleus and thefshese score values to evaluate
a set of nuclei. Our task is to find the best non-overlappimgstof the whole nuclei candidate
set, where this summarized score value is maximal.

We have developed an algorithm based on the backtrackingaug82] to find the best
subset of non-overlapping nuclei. The number of subtaskaledhe number of cell nuclei can-
didates in the examined cluster. Every subtask represkatddcision that the corresponding
nucleus is accepted or rejected. The backtrack search ezamil potential solutions quitdfe
ciently, and relies upon these search to select the coniinaftnuclei with the largest aggregate
accuracy (see Algorithm 2).

In the case of overlapping nuclei, the outcome is always #st bombination. We merge
these sets with the already accepted nuclei and this leatie final result of the whole merge
task.

It is worth noting that in the clustering phase, we createess\wclusters of cell nuclei for
further processing. There are not any overlapping cellsvim different clusters. Therefore,
we can consider these as independent groups. Thus, we cae dort-overlapping cell nuclei
selection parallel for each group. It is hard to create a tvacking algorithm for the GPU;
therefore, we have only a CPU implementation. However, dasethe independence of the
clusters, we can use the multi-core capability of the CPUréz@ss more than one cluster at the
same time. This can easily decrease the required procdssiag

6. Evaluation of the algorithm

6.1. Accuracy test

Using the split-and-merge method does not always give threegasult as the normal se-
guential region growing, but this does not necessarily nieanit is less accurate. We can use
the already mentioned Gold Standard images to check theaycuUnfortunately, we do not

11

have any high-resolution annotated samples; thereforeseasmaller images with modified pa-
rameters: we set the tile size smaller than the recommernze9024x1024 pixels instead the
suggested 2048x2048 pixels). The widths of the overlappgidns are all the same (120 pixels).

In these tests, we use one CPU core to measure the "origioataxy” and one CPUY two
GPUs to measure the split-and-merge accuracy. We have hisedaluation method described
in our previous paper [16]. The results indicate that the temlinique does not cause significant
degradation of the accuracy (Table 2).

We do not have any large annotated images; therefore, wetar@asure the absolute value
of accuracy in these cases. However, we can use the resuts afready existing sequential
CPU based application (verified by several tests and useddiyworld applications for several
years). Asitis clearly visible in Table 3, thefildirences between the results are not significant and
are usually less than 2%. It is worth noting that this doesrmedin lower accuracy. Sometimes
the multi-GPU algorithm gives better results.

It has been noted that the split-and-merge method has oelyimitation: we cannot guar-
antee that the result of this new algorithm will be exactly ame as the original sequential one.
However, that posterior tests have good results, tifergince is not significant and the speed-up
is very impressive.

6.2. Speed test

Developing GPGPU codes is usually expensive and uncomgndiis worth doing only if
the GPGPU based application is spectacularly faster. Weederal speed tests to check the
speed-up and the results are very promising. The detailsralmtime measuring method are as
follows: we have done five independent tests on the givendigaages (as the standard devia-
tions show the values are reliable). According to real-diednditions, we take into considera-
tion all operations between the start and the end of the ithgo(load image from file, splitting,
distribution, region growing, result reporting, mergingYe use three devices inftérent con-
figurations: CPUL - Core-i5 2400 processor (4 cores, 3.1 GEBPU; andGPU, - Gigabyte
GTX580 graphics cards (480 cores). It is hard to comparepkedof two algorithms running
on different hardware, especially in this case since the CPU andl@R& drastically dierent
architectures. We choose these two devices because (antheftpurchase) both represent the
average qualiticost in their own market.

Table 3 also shows the detailed runtimes of the split-ancgeienplementation using only
CPU. The split part consists of the following: load the imagenirthe hard disk, split it into
smaller overlapping tiles, and save these onto the harddiskt of the elapsed time is required
by the file operations). The region growing part is the ruetiof the already existing nuclei
detection algorithm. The merge part consists of the follmnsteps: loading the region growing
result from the hard disk, collecting overlapping nucleisters, and finding the optimal subset of
non-overlapping nuclei. As it is visible, the required datglial time for the splitting and merging
does not cause significant increases in the full executioe.ti

We have done some additional examinations, using multgléds with the split-and-merge
method. The tested configurations were as follows: @BU, only GPU;, CPU + GPUq,
GPU; + GPU,, CPU + GPU; + GPU,. We have run the image segmentation on 30 images
of different resolutions (2048x2048, 4096x4096, and 8192x8182g)i The results (see Ta-
ble 4) are promising. The processing time decreased dafgtiand the CPU and the GPUs
can work together veryfciently. Sometimes, in the case of 2048x2048 pixel size gsathe
CPU+GPU;+GPU, version was slower than ti&PU; +GPU, version. However, this was only

12

caused by some scheduling problems: GPUs are more than &wi€ast as the CPU; there-
fore, untilCPU finished the segmentation dfile;, GPU; finished withTile, andTiles, GPU;
finishedTiles, and the GPUs have to wait for the CPU.

As expected, configuration with more devices usually neeststime to process all the tiles.
In the case of the GPUs, the speed-up is quite linear, whightisurprising because all the GPUs
can work on the tiles independently. Therefore, these dsvaan use all of their processing
power. This is not exactly true for the CPU, because it is slothan the GPUs. On the other
hand, GPGPU implementations cause some load on the CPU too.

6.3. Tile size test

Our preliminary tests showed that the advantage of the GRjdeister in the case of large
images. Therefore, we expect larger tile size to lead t@bptrformance. To demonstrate this,
we did some additional tests usingfdrent tile sizes (2048x2048 pixels and 4096x4096 pixels)
on two full-sized tissue sample images (8192x8192 pixdlbke tested configurations were the
same as before: onlyPU, onlyGPU,, CPU + GPU;, GPU; + GPU,, CPU + GPU; + GPU,.
Table 5 shows the run-time values for both tile sizes, anddtie of these values.

As can be seen, the CPU implementation was not able to berwfitthe larger tile size,
and it became even slower. In fact, the CPU code operates aathe speed, but some adverse
circumstances degrade its performance. For example, @nei@lot of empty areas in these full-
sized images, and in the case of large tiles, the CPU hasdanékese areas (in the seed point
search phase) more times than in the case of small tiles.oDglyi the GPUs also have to deal
with this problem, but the seed point search is very paiailble, therefore it is extremely fast
in the graphics cards.

It can also be seen, that GPUs need less time to process the infame using larger tiles.
On the one hand, larger tiles mean more independently rd@megion growing, fewer kernel
launches, etc. On the other hand, the merge pafffésted, because in the case of large tiles,
the ratio of the overlapping areas is smaller. As expectelGPU implementations are almost
twice as fast in these cases. The best configurations aré&tael 2nd the CPYU2GPU using the
2048x2048 pixels tile size (as was previously discussadgetimes the CPYU2GPU version is a
bit slower than the 2GPU version due to the unfortunate adivey] but this is not general).

13

Summary

The aim of our research is developing a new data parallebregjiowing algorithm that can
be implemented even in a GPGPU environment and which is tapébegmenting HE stained
cell nuclei and identifying their exact locations and sizdhe new method has three levels
of parallelization: 1) parallelization of the region grawgi method itself to use one thread for
processing of each contour point, 2) starting more than egmn growings in the GPGPU at
the same time to utilize the processing power fully, and 8)gimultiple GPGPUs based on the
split-and-merge method.

As the results indicate, the split-and-merge technique dot cause significant degradation
of the accuracy (the averagedférence between the accuracy of the original one-step @Bionces
method and the new method is about 0.03%). In the case of ohk tBE speed-loss caused
by the split-and-merge technique is insignificant compéaoetie runtime of the original region
growing.

The advantages of this technique are shown in the case af usiftiple devices. As ex-
pected, a configuration with more devices usually needgilessto process all the tiles. In the
case of the GPGPUSs, this speed-up is quite linear, and addity we can use the CPU for pro-
cessing as well. Using the best configuration means aboupéXdsup (see Figure 3). Due to
the lack of required hardware configurations, we cannotlcbenfigurations with more than two
graphics cards, but it is expected that this trend contifioresp to four GPGPUs (more GPUs
can overload the CPU).

Another advantage of the new procedure is that we can prdektsized colon tissue im-
ages. This was previously impossible due to the high meneaqyirement of the original region
growing method. This is a very useful improvement for piaadtpurposes.

The disadvantage of this technique is the special hardveapgirement. Unfortunately, we
cannot create a widely usable demo application becauseshens needs special hardware de-
vices and Windows drivers (NVidia graphics cards with Felaed cores). In practice, this is
not an issue as these hardware elements are available fendhéesers.

14

References

(1]
(2]
(3]
(4]
(5]
(6]

[11]
[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]
[21]

[22]

(23]
[24]

[25]

S. D. Olabarriaga, A. W. M. Smeulders, Interaction in #egmentation of medical images: A survey, Medical
Image Analysis, vol. 5, no. 2, 2001, pp. 127-142.

G. Placidi, Adaptive compression algorithm from prdjens: Application on medical greyscale images, Comput-
ers in Biology and Medicine, vol. 39, no. 11, 2009, pp. 993-99

P. Suapang, K. Dejhan, S. Yimmun, Medical image arclgyiprocessing, analysis and communication system for
teleradiology, in: IEEE Region 10 Conference (TENCON),2Qdp. 339-345.

A. Bogardi-Mészoly, A. Rovid, H. Ishikawa, S. Yokayna, Z. Vamossy, Tag and topic recommendation systems,
Acta Polytechnica Hungarica, vol. 10, no. 6, 2013, pp. 1911

M. Gurcan, J. Kong, O. Sertel, B. Cambazoglu, J. SaltzZCatalyurek, Computerized pathological image analysis
for neuroblastoma prognosis, in: AMIA Annu Symp Proc, 2087.,304—-308.

G. Valcz, . Bandi, B. Wichmann, A. Patai, D. Szab06, GsHer, M. Kozlovszky, B. Molnar, Z. Tulassay, Auto-
mated detection of epithelial changes in colorectal carom, Zeitschrift fir Gastroenterologie, vol. 50, no. 5120

pp. 1-5.

Z. Benyo, |. Benyd, M. Bolla, G. Lakatos, P. Nagy, L. >i, J. Tick, Application of computational statistics to
the investigation of tumors of the digestive system, in:c@edlings of the Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 1991, pp43—1344.

A. Tanacs, K. Palagyi, A. Kuba, Medical image regititta based on interactively identified anatomical landmark
points, Machine GRAPHICS & VISION, vol. 7, no. 1-2, 1998, [d51-158.

W. Sun, P. Lal, Recent development on computer aidedéigngineering — a review, Computer Methods and
Programs in Biomedicine, vol. 67, no. 2, 2002, pp. 85-103.

M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, R. Mozak, Computer-aided diagnosis of breast cancer based
on fine needle biopsy microscopic images, Computers in Bjobnd Medicine, vol. 43, no. 10, 2013, pp. 1563—
1572.

M. El Adawy, Z. Shehab, H. Keshk, M. El Shourbagy, A fafdasithm for segmentation of microscopic cell
images, in: ITI 4th International Conference on Informat@ommunications Technology (ICICT), 2006, pp. 1-1.
J. Hukkanen, A. Hategan, E. Sabo, |. Tabus, Segmentafioell nuclei from histological images by ellipse fitting,
in: 18th European Signal Processing Conference (EUSIPEI), pp. 1219-1223.

R. Pohle, K. D. Toennies, Segmentation of medical insaggng adaptive region growing, in: M. Sonka, K. M.
Hanson (Eds.), Medical Imaging 2001: Image Processing,A822 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, 2001, pp. 1337-1346.

S. Szénasi, Z. Vamossy, M. Kozlovszky, Prepariniiah population of genetic algorithm for region growing
parameter optimization, in: 4th IEEE International Symposon Logistics and Industrial Informatics (LINDI),
2012, pp. 47-54.

K. Masood, N. Rajpoot, K. Rajpoot, H. Qureshi, Hyperspa colon tissue classification using morphological
analysis, in: International Conference on Emerging Teldgies (ICET), 2006, pp. 735-741.

S. Szénasi, Z. Vamossy, M. Kozlovszky, Evaluatiown @omparison of cell nuclei detection algorithms, in: IEEE
16th International Conference on Intelligent Enginee@ygtems (INES), 2012, pp. 469-475.

E. Gabriel, V. Venkatesan, S. Shah, Towards high peréorce cell segmentation in multispectral fine needle aspi-
ration cytology of thyroid lesions, Computer Methods andgPams in Biomedicine, vol. 98, no. 3, 2010, pp. 231—
240.

S. Di Cataldo, E. Ficarra, A. Acquaviva, E. Macii, Autated segmentation of tissue images for computerized ihc
analysis, Computer Methods and Programs in Biomedicine 100, no. 1, 2010, pp. 1-15.

R. Adams, L. Bischof, Seeded region growing, IEEE Teations on Pattern Analysis and Machine Intelligence,
vol. 16, no. 6, 1994, pp. 641-647.

O. Kutter, R. Shams, N. Navab, Visualization and GPOeterated simulation of medical ultrasound from CT
images, Computer Methods and Programs in Biomedicine 9¥olno. 3, 2009, pp. 250-266.

O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, R. Westann, A survey of medical image registration on
graphics hardware, Computer Methods and Programs in Bimmedvol. 104, no. 3, 2011, pp. 45-57.

S. Szénasi, Z. Vamossy, M. Kozlovszky, GPGPU-badath parallel region growing algorithm for cell nuclei
detection, in: IEEE 12th International Symposium on Corapanal Intelligence and Informatics (CINTI), 2011,
pp. 493-499.

A. Eklund, P. Dufort, D. Forsberg, S. M. LaConte, Mediitaage processing on the GPU — past, present and future,
Medical Image Analysis, vol. 17, no. 8, 2013, pp. 1073-1094.

S. Szénasi, Z. Vamossy, Implementation of a disteld genetic algorithm for parameter optimization in a cell
nuclei detection project, Acta Polytechnica Hungaricd, 18, no. 4, 2013, pp. 89-86.

S. Szénasi, Z. Vamossy, Evolutionary algorithm dptimizing parameters of GPGPU-based image segmentation,
Acta Polytechnica Hungarica, vol. 10, no. 5, 2013, pp. 7-28.

15

[26] T. D. R. Hartley, U. V. Catalyurek, A. Ruiz, F. D. IgyaR. Mayo, M. Ujaldon, Biomedical image analysis on a
cooperative cluster of GPUs and multicores, in: P. Zhou)(E@S, ACM, 2008, pp. 15-25.

[27] S. Szénasi, Distributed implementations of cellleudetection algorithm, in: Proceedings of the 1st Int&omeal
Conference on Image Processing and Pattern Recogniti®RjIR2013, pp. 105-109.

[28] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analyand Machine Vision, 2nd Edition, Chapman & Hall,
1998.

[29] N. Wirth, Toward a discipline of real-time programmijrf@ommun. ACM, vol. 20, no. 8, 1977, pp. 577-583.

[30] J. B. Kruskal, On the shortest spanning subtree of algeanal the traveling salesman problem, Proceedings of the
American Mathematical Society, vol. 7, no. 1, 1956, pp. 48-5

[31] E. Toth-Laufer, M. Takacs, |. Rudas, Neuro-fuzzykrisalculation model for physiological processes, in: IEEE
10th Jubilee International Symposium on Intelligent Syste&nd Informatics (SISY), 2012, pp. 255-258.

[32] S.S. Skiena, The Algorithm Design Manual, SpringeQ&0

Acknowledgements

This work makes use of results produced by the HungariaroNaltiTechnology Programme,
Al, Life sciences, the “Development of integrated virtuémscopy technologies and reagents
for diagnosing, therapeutical prediction and preventeening of colon cancer “Hungarian
National Technology Programme, A1, Life sciences, (3@3sproject and th©E-RH 11042-
2011 project.

16

Figures and Tables

Algorithm 1 Data parallel region growing

1: function RecrionGrowiNG(Seedpoint)

2: region <« {seedpoint last « seedpoirnthest— @; contour« 0
3 while =S topConditiofregion contour) do

4 GetRegionProperti€segion ref | egion, ref Ruax, ref cente)
5: parallel execution wherethreadinden (1,2,3,4)

6: if Insidelmag@ast+ Direadingdey then
7
8
9

new« last+ Dinreadindex
if new¢ regionu contourand Processablgnew) then

: contour« contourU new > Contour expansion
10: end if
11: end if
12: end parallel execution
13: Cmax< 0
14: parallel execution wherethreadinden (1, 2, .., [contout)
15: CP « contoufthreadindek
16: C « |icp = lregion| + @ * (d(CP, cented/Ryax) > Score
17: Cwmax < AtomicMaxC, Cyax) > Maximal score race
18: end parallel execution
19: parallel execution wherethreadinden (1, 2, .., [contout)
20: if C = Cuax then > Who wins?
21: last « contoufthreadlndek
22 end if
23: end parallel execution
24: region « regionu last > Expand region
25: contour« contour) last > Reduct contour
26: if best= 0 or S cordregion) > S corégbes) then
27: best« region > First or better score
28: end if

29: end while
30: return best
31: end function

Variables and functions of the pseudocode:

lregion: The average intensity of the region.

Rvax: Maximal radius of the region.

center Mass center of the region.

D: The 4 directiond; = (0,1); D, = (1,0); D3 = (0, -1); D4 = (-1, 0).

Ip: Intensity of pixel P.

InsidelmagéP): Result is true if P is in the picture.

ProcessabléP): Result is true if P is not part of any other regions.

a: Weighting factor.

d(a, b): The (Euclidean) distance between points a and b.

S cordregion): Fitness value of the region (based on size, intensity.etc.
StopConditiofregion contoul): Checks the stopping conditions of the region growing
procedure (size, available points, %c.).

Algorithm 2 Backtracking algorithm for non-overlapping nuclei filtegi
1: procedure Backtracking(level, ref R, ref Found,ref OPT)

2: i<0 > 0 - acceptl - reject this nucleus
3 while i <1do

4 je1

5; while (j < leve) and (R; = 0 or -Overla{NCieve,, NC;) do

6: jej+1

7 end while

8 if j = levelthen > Acceptable together
9: Rievel < i > Store this result
10: if level= N then

11: if =Foundor S corégR) > S cordOPT) then

12: Found« true > First or better result
13: OPT « R

14 end if

15: else

16: Backtracking(levet1,ref R, ref Foundref OPT);

17: end if

18: end if

19: i—i+1

20: end while
21: end procedure

Variables and functions of the pseudocode:

N: Number of cell nuclei candidates in the given cluster.

NG;: Thei®" cell nucleus candidate.

level Index of the currently examined nucleus candidatg (&vel < N). Initial value is
1.

OverlagNCy, NC,): Resultis true ifNC; andNC; overlap each other.

R: Vector of N integers. Contains the actual soluti® i O if the i!" cell nucleus is
rejected and it is 1 if thé" cell nucleus is accepted).

Found Becomes true when the algorithm finds the first valid sotutitnitial value is
false.

OPT: Contains the optimal solution (format is the same as the&0fR).

18

¥

Figure 1: Splitted HE stained colon tissue image. Green ac@rlapped area. Yellow rectangle:
location of Tile 1. Red areas: cell nuclei candidates usirggad point from Tile 1. Blue areas: cell nuclei
candidates using a seed point from Tile 2. Type a: cell nicdadidates completely located in the
non-overlapping area. Type b: cell nuclei candidates usiegd points from the non-overlapping area but
grown into the overlapping area. Type c: non-overlappintj meclei candidates in the overlapping area.
Type d: overlapping cell nuclei candidates.

19

b)

Figure 2: Result of the backtrack algorithm. a) Input: owagping cell nuclei candidates (nuclei with
different colours are from gierent GPGPUSs) b) Output: the optimal solution. Non-ovepiagy cell nuclei
candidates with maximum summarized score.

20

1200

1000

600

Runtime (sec)

200

1047

316
247
l :
163
T T . ._,
GPU CPU+GPU 2GPU CPU+2 GPU

CPU

Configuration

Figure 3: Average runtime for glierent configurations in case of full sized images (8192x§i92s)

using recommended tile size (2048x2048 pixels).

21

Table 1: Runtimes of the CPU and the GPU implementationsiffardnt image dimensions. Relative
runtime means how long it took to process one pixel. Speds/thpe ratio of these relative values.

' Dim Runtime Rel. ru_ntlme
Slide ID L (ms) (mg/pixels) Speed-up
(pixe) cpy GPU CPU GPU
10359-04ep 1024 21584 15050 0.0206 0.0144 1.4
10393-04ep 1024 24676 17204 0.0235 0.0164 1.4
1050-04lladenomavilidyspl 1024 18428 11950 0.0176 0.0114 15
1160-05CRCA-B 1024 31160 17298 0.0297 0.0165 1.8
11700-04CRCA-B 1024 21942 13764 0.0209 0.0131 1.6
12138-03Adenomavillosum 1024 20276 14996 0.0193 0.0143 4| 1.
12532-04CRCA-B 1024 29060 17916 0.0277 0.0171 1.6
2877-041Hyperpl 1024 34470 20240 0.0329 0.0193 1.7
6134-04p 1024 21830 14472 0.0208 0.0138 1.5
8658-04IHyperpl 1024 29402 18418 0.0280 0.0176 1.6
986604Chron 1024 27528 14714 0.0263 0.0140 1.9
986604Crohn 1024 25670 15790 0.0245 0.0151 1.6
9872-04l_ep 1024 26718 15342 0.0255 0.0146 1.7
CRCA-B1 1024 35274 17132 0.0336 0.0163 2.1
rossz1013-05CRC-B 1024 33498 19094 0.0319 0.0182 1.8
10359-04ep 2048 141256 41632 0.0337 0.0099 3.4
10393-04ep 2048 140148 38392 0.0334 0.0092 3.7
1050-04lladenomavifidyspl 2048 106896 26298 0.0255 0.0063 4.1
1160-05CRCA-B 2048 201184 50144 0.0480 0.0120 4.0
11700-04CRCA-B 2048 131644 35624 0.0314 0.0085 3.7
12138-03Adenomavillosum 2048 85688 32134 0.0204 0.0077 7 2.
12532-04CRCA-B 2048 153828 40556 0.0367 0.0097 3.8
2877-041Hyperpl 2048 151172 42892 0.0360 0.0102 3.5
6134-04p 2048 137362 37064 0.0327 0.0088 3.7
8658-04IHyperpl 2048 170760 44454 0.0407 0.0106 3.8
986604Chron 2048 164612 36846 0.0392 0.0088 4.5
986604Crohn 2048 143564 37500 0.0342 0.0089 3.8
9872-041 _ep 2048 148648 40100 0.0354 0.0096 3.7
10359-04ep 4096 455175 101688 0.0271 0.0061 4.5
1050-04lladenomavifidyspl 4096 525724 140594 0.0313 0.0084 3.7
1160-05CRCA-B 4096 524166 139058 0.0312 0.0083 3.8
11700-04CRCA-B 4096 391826 152480 0.0234 0.0091 2.6
12138-03Adenomavillosum 4096 489434 133166 0.0292 0.0079 3.7
12532-04CRCA-B 4096 418242 134526 0.0249 0.0080 3.1
2877-041Hyperpl 4096 471368 171144 0.0281 0.0102 2.8
6134-04p 4096 909918 77446 0.0542 0.0046 11.7
8658-04IHyperpl 4096 429865 200300 0.0256 0.0119 2.1
986604Chron 4096 341888 98892 0.0204 0.0059 3.5
986604Crohn 4096 339073 139930 0.0202 0.0083 2.4
9872-04l_ep 4096 607074 124704 0.0362 0.0074 4.9
CRCA-B1 4096 353276 123358 0.0211 0.0074 2.9

22

Table 2: Comparison of original region growing and splitetamerge method accuracy in the case of Gold
Standard images.

Slide ID Accuracy Difference
Original Split-and-merge

0259-ES-02 69,15% 69.70% 0.54%
0259-ES-03 76.29% 76.48% 0.18P6
0259-PR-01 80.82% 80.95% 0.13P6
0259-PR-02 83.06% 83.47% 0.42M%6
1031-ES-01 94.23% 94.11% -0.11P%
1031-ES-02 77.29% 77.52% 0.236
1429-PR-02 70.27% 70.55% 0.27M6
2167-ES-01 67.20% 67.15% -0.04%%
2167-ES-02 71.95% 71.96% 0.01P6
2167-ES-03 75.83% 76.53% 0.70%
2224-PR-01 80.83% 80.71% -0.12P%
2224-PR-02 80.21% 80.58% 0.37Pb6
2225-ES-01 84.22% 84.36% 0.14%
2225-ES-02 81.43% 81.46% 0.03P6
2225-ES-03 80.52% 80.40% -0.12P%
2508-PR-01 83.60% 83.67% 0.07%
2508-PR-02 80.72% 79.83% -0.89%
2819-ES-01 68.73% 68.70% -0.03P%
2819-ES-02 76.97% 77.17% 0.2006
2819-ES-03 63.79% 64.15% 0.36%
2819-PR-01 77.25% 78.31% 1.06%
2819-PR-02 80.31% 80.48% 0.17P6
2819-PR-03 76.38% 76.58% 0.2006
2856-ES-01 67.80% 68.80% 1.00%
2856-ES-02 75.23% 75.98% 0.75M6
2857-ES-01 92.47% 91.36% -1.12P%
2857-ES-02 81.86% 80.53% -1.33M6
2857-ES-03 83.10% 82.53% -0.57%%
2924-PR-01 89.14% 88.20% -0.94%%
2924-PR-02 83.20% 82.24% -0.96P%
2924-PR-03 75.72% 74.50% -1.22P%
3019-PR-01 82.67% 82.64% -0.02P%
3019-PR-02 80.91% 80.53% -0.3806
3019-PR-03 93.06% 93.02% -0.04%%
3381-ES-01 81.39% 81.39% 0.00p6
3381-ES-03 75.63% 75.63% 0.00%
3381-PR-01 65.32% 65.24% -0.08Pb6
3381-PR-02 72.38% 72.34% -0.04P%
3381-PR-03 70.68% 70.68% 0.00P6
Average 78.25% 78.22% -0.03%

23

Table 3: Results of processing 2048x2048 pixels imagesn8amlumn shows thefirence of the results
between the original CPU region growing and the new splid-amerge method (using the evaluation
method described in [16], using the original result as thierence and the split-and-merge result as the
testimage). The following columns show the detailed andrsanied runtime values. The last column
contains the (runtime) ratio of the additional split and memprocedures to the full processing time.

Slide ID Result _ Runtime (ms) S&M
dif. Split Growing Merge Sum(ms) (atio
10359-04ep 1.61% 18 106033 0 106051 0.0{%
10393-04ep 2.35% 18 111103 0 111121 0.01%
1050-04lladenomavilldysp 1.82% 15 76976 0 76991 0.01%
1160-05CRCA-B 1.59% 21 157260 0 157281 0.01%
11700-04CRCA-B 1.33% 15 100046 0 100061 0.01%
12138-03Adenomavillosum 2.87% 18 66633 0 66651 0.02%
12532-04CRCA-B 2.00% 18 113923 0 113941 0.01%
2877-04IHyperpl 2.22% 18 126962 0 126980 0.01%
6134-04p 1.48% 18 100417 0 100435 0.01%
8658-04IHyperpl 1.76% 21 126534 0 126555 0.01%
986604Chron2048 1.29% 21 119499 0 119520 0.01%
986604Crohn4096 1.43% 18 113171 218 113407 0.20%
9872-04l ep 2.13% 21 117730 0 117751 0.01%

24

Table 4: Runtime of the split-and-merge method in caseffrdint image sizes andffirent

configurations.
4 Dimension Runtime (ms)
(pixel) CPU GPU CPUtGPU 2GPU CPWU+2GPU

1 2048 106052 70362 54116 35695 33437
2 4096 220805 148044 92037 75841 60094
3 2048 111122 69557 55373 35340 33224
4 2048 76992 47040 32884 26195 24925
5 4096 424174 240474 160252 121555 107128
6 8192 1083125 660633 431933 337422 278292
7 2048 157282 76262 56325 38893 41673
8 4096 437465 241972 164046 122313 98545
9 2048 100061 62362 46538 31799 31964
10 4096 436925 273936 180174 143498 126996
11 2048 66652 54777 35009 33830 21571
12 4096 288475 245631 136297 124700 95004
13 2048 113942 70421 49835 36092 38700
14 4096 313304 209155 131199 112607 91188
15 2048 126981 75051 49218 39954 34104
16 4096 562331 326736 204569 168311 146081
17 2048 100436 63211 55295 33377 29708
18 4096 203343 143498 89572 72405 54152
19 2048 126556 75135 53888 39633 38457
20 4096 537592 330736 219273 169185 140135
21 2048 119521 62216 46126 31483 34410
22 4096 324692 189275 120909 95128 75794
23 2048 113409 68459 48952 35040 36048
24 4096 426888 258848 171849 134088 116544
25 2048 117752 70343 58902 35552 35015
26 4096 410396 251091 159968 126644 99918
27 2048 156156 85734 65036 47502 47177
28 4096 403251 227576 148390 113976 95378
29 4096 661035 381124 268560 197930 173550
30 8192 691642 483778 294366 248202 198931
>, 9018357 5563437 3680891 2864190 2438943

25

Table 5: Runtime of the split-and-merge method in caseffirdit tile sizes and gierent configurations.
The size of both images is 8192x8192 pixelgfeience means the runtime ratio for the larger tile size to
the smaller tile size.

o) i) Runtime (ms)
Tile Size (pixel) Configuration Image 1 Image 2 Sum
CPU 1083125 691642 1774767
GPU 660633 483778 1144411
CPU+GPU 431933 294366 726299
1024 2 GPU 337422 248202 585624
CPU+2 GPU 278292 198931 477228
CPU 1305257 789345 2094602
GPU 360850 272111 63296[
CPU+GPU 299994 193892 49388p
2048 2 GPU 187861 138384 326245
CPU+2GPU 188910 168561 357471
CPU 1.20 1.14 1.18
GPU 0.54 0.56 0.55
, CPU+GPU 0.69 0.65 0.68
Difference 2 GPU 0.55 0.55 0.55
CPU+2 GPU 0.67 0.84 0.75

26

