
”NOTICE: this is the author’s version of a work that was accepted for publication in Com-
puters in Biology and Medicine. Changes resulting from the publishing process, such as
peer review, editing, corrections, structural formatting, and other quality control mech-
anisms may not be reflected in this document. Changes may havebeen made to this
work since it was submitted for publication. A definitive version was subsequently pub-
lished in: S. Szénási, ”Segmentation of colon tissue sample images using multiple graph-
ics accelerators”, Computers in Biology and Medicine (2014), Vol. 51, pp. 93-103, DOI
10.1016/j.compbiomed.2014.05.002”.

Segmentation of Colon Tissue Sample Images Using Multiple
Graphics Accelerators

Sándor Szénásia

aJohn von Neumann Faculty of Informatics,Óbuda University, 96/B Bécsi út, H-1034 Budapest, Hungary

Abstract

Nowadays, processing medical images is increasingly done through using digital imagery and
custom software solutions. The distributed algorithm presented in this paper is used to detect
special tissue parts, the nuclei on haematoxylin and eosin stained colon tissue sample images.
The main aim of this work is the development of a new data-parallel region growing algorithm
that can be implemented even in an environment using multiple video accelerators. This new
method has three levels of parallelism: a) the parallel region growing itself b) starting more region
growing in the device c) using more than one accelerator. We use the split-and-merge technique
based on our already existing data-parallel cell nuclei segmentation algorithm extended with
a fast, backtracking-based, non-overlapping cell filter method. This extension does not cause
significant degradation of the accuracy; the results are practically the same as those of the original
sequential region growing method. However, as expected, using more devices usually means
less time is needed to process the tissue image; in the case ofthe configuration of one central
processing unit and two graphics cards, the average speed-up is about 4–6X. The implemented
algorithm has the additional advantage of efficiently processing very large images with high
memory requirements.

Keywords: Medical image segmentation, Cell nuclei detection, Data parallel algorithm,
Distributed algorithm, GPGPU, CUDA
PACS:42.30.Tz, 87.57.nm
2000 MSC:65D18

URL: E-mail: szenasi.sandor@nik.uni-obuda.hu / Phone num.: +361666551 (Sándor Szénási)

Preprint submitted to Computers in Biology and Medicine July 10, 2014

1. Introduction

Nowadays, digital microscopes are becoming increasingly popular among pathologists. The
processing of microscopic tissue images and the segmentation of tissue components are now done
through digital imagery and special immunodiagnostic software products [1]. These are fast and
accurate products and can serve several additional functions, like remote access, archiving [2, 3],
searching and tagging [4], semi-automatic diagnostics [5,6, 7], registration [8], computer-aided
tissue engineering [9] etc. This kind of processing offers a very promising way of using different
segmentation techniques with the images received; this way, the different components of the
tissues can be separated effectively. Appropriately, precise recognition of the tissue components
would provide a safe background for automated status analysis of the examined patients, or at
least promote the work of pathologists with this pre-processing.

Our work focuses on the segmentation of images containing haematoxylin and eosin (HE)
stained colon tissue samples. There are several proceduresto identify the main structures in
these images and many are based on a reliable cell nuclei detection method. There are several
image processing algorithms for this purpose [10, 11, 12, 13], but some factors could increase
the challenge. The size of the images can easily reach 100 megabytes; therefore, the image
processing speed plays an important factor.

In this paper, after the presentation of the technical background (related work, evaluation
method, etc.), we propose a new cell nuclei segmentation algorithm implemented in a heteroge-
neous environment. This method uses all the available GPUs of the system for the most com-
putationally intensive tasks (data-parallel cell nuclei segmentation), and all the available CPU
cores for the less computationally intensive additional tasks (splitting and merging images, and
controlling the GPUs).

2. Evaluation of cell nuclei detection methods

2.1. Accuracy of nuclei segmentation algorithms

For comparison, we have to evaluate the accuracy of the different algorithms. We have 39
colon tissue sample images manually annotated by qualified pathologists (we will refer to these
as the Gold Standard slides), therefore we can compare the outputs of the algorithms to these
results. There are several available evaluation methods for this purpose, but most of them are
not suitable for this task, therefore we designed a new methodology. We have to know the exact
position and shape of cell nuclei for further diagnosis purposes, therefore the basic object-level
comparison methods are not applicable (for example, just compare the number of cell nuclei,
etc.); we need a pixel-level comparison method. The widely used confusion matrix gives very
clear and easily understandable results, based on Equation1.

Accuracy=
T P+ T N

T P+ T N+ FP+ FN
(1)

where

• TP: Number of true-positive pixels (the pixel is correctly classified as part of a nucleus in
both the reference result set and in the test result set).

• TN: Number of true-negative pixels (the pixel is correctly classified as not part of a cell
nucleus).

2

• FP: Number of false-positive pixels (in the test result, thepixel is classified as part of a
nucleus, but in the reference result it is not).

• FN: Number of false-negative pixels (the pixel is incorrectly classified as not part of a cell
nucleus).

However, this pixel-level evaluation itself will not give us perfect results, because during the
segmentation our task is not only to determine whether a pixel belongs to a nucleus or not,
we have to identify the closed nuclei objects themselves. For example, in the case of false-
negative hits, the pixel-level evaluation cannot indicatehow many nuclei the algorithm misses
(for diagnostic purposes, it really matters whether we missonly one big nucleus, or a lot of
small nuclei). Another problem can be when there are severalsmall nuclei in the reference slide,
but the algorithm identifies them as one large nucleus. In this case, the pixel-level comparison
indicates relatively small errors; however, this can be very important information for detecting
malicious cells.

Our specialized measurement number is not based only on the pixel-by-pixel comparison;
instead it starts by matching the cell nuclei together in thereference and the test results. One cell
nucleus from the reference result set can only have one matching cell nucleus in the test result
set and vice versa. After matching the cell nuclei, we can compare the paired elements using the
confusion matrix. There are some other improvements: for example, we use some weighting in
the case of false-positive and false-negative pixels basedon the distance from the nearest valid
pixel, which is important for the appropriate results near the borders of the nuclei.

The implementation of this evaluation method raises several problems. The pairing of the
test-reference nuclei is a very resource-consuming step (in the case of several overlapping nuclei,
the number of valid pairings can be billions); therefore we use a backtracking-based method to
find the optimal result [14]. In this paper, we will use this evaluation method for every task
where we need to check the accuracy of the nuclei detection algorithm (evaluation of algorithms,
testing, parameter optimizing, etc.).

2.2. Comparison of nuclei detection methods

The main purpose of these algorithms is the same: we have to select the pixels of the sample,
which could belong to any nucleus. The first thought would be to use the colours of the pixels
for this separation, but in practice, this causes many difficulties. In the case of a specific image,
we can achieve good results because we can easily teach the program whether a given colour
represents a nucleus pixel or not. However, our experiencesshow that the colours of the images
pre-processed by different labs are significantly different. This problem can be solved with some
profile files (one profile for each lab), since we can transformall images into a standardized
colour space. However, in practice, it turned out that thereare significant differences between
results from the same laboratories as well. Even if the same tools and materials are used, a
different amount of stain and processing time can cause different colours (in some cases, the
nuclei are very strong dark areas, but in the case of some other images, these are significantly
less contrasting).

There are various automatic threshold based techniques to solve this problem. Several papers
deal with segmentations using the K-means procedure [15], which produces very quickly and
with impressive results. The main limitation of this methodis the insufficient accuracy [16].
Further options are the texture based methods [17] and colour clustering [18]. It is easy to
achieve the quick results initially with moderate accuracy, but further development is generally

3

impossible. Nevertheless, it is worth considering these techniques as they are quite flexible in
regards to various staining conditions. Therefore, these procedures can be used for fast pre-
processing.

Region growing is a more sophisticated technique [19]. Thisis because we can exactly
define and fine-tune the iteration steps by choosing an arbitrary fitness function and stopping
condition. Both of these may consider the colour of the pixels, the environmental conditions,
the size of the increased region, their position, etc. Another important advantage of the region
growing approach is that it provides information not only about the individual pixels (whether a
given pixel belongs to a cell nucleus or not), but it gives detailed information about the whole
cell nuclei objects (the result of the region growing is a list of cell nuclei). This information is
essential by itself for the diagnosis (number of nuclei, density of nuclei, etc.), and it is useful for
the further segmentation of the image (glands, surface epithelium, etc.).

However, region growing has some disadvantages as well. First, the biggest problem is that
this method is rather slow. The process is slow to the extent that practical use seems almost
impossible, because the segmentation of large images (8192x8192 pixels size or even greater)
containing a moderate number of nuclei may require up to one hour to complete. However, be-
cause the process offers good accuracy, it is definitely worth dealing with this drawback, though,
we have tried to speed up the process as much as possible (without loss of accuracy). For the
implementation, we use the graphics hardware, because it isused in similar projects with good
results [20, 21].

3. Cell detection with data parallel region growing

3.1. Parallel region growing

The implemented region growing algorithm iterates the following three steps until one of the
stopping conditions is met. Due to space limitations, this paper contains only a brief description
of parallel region growing. Detailed introductions can be found in [22].

1. It checks the four possible directions in which the contour can be expanded. In case of the
first iteration, this means the four neighbours of the starting point (seed point), in the latter
iterations the pixels around the lastly accepted contour point (see below). We can check
all directions at the same time; therefore, four threads examine the different neighbours,
whether they are suitable for further expansion or not.

2. In the next step, all contour points are evaluated to decide the direction in which the region
should be expanded. The algorithm evaluates a fitness function for every point. Unfortu-
nately, some parameters of this fitness function change at the insertion of every new point
(centre of the region, average intensity of the region, etc.). So, they have to be re-calculated
in every iteration for every contour point. However, this isa well parallelizable process;
every thread calculates the fitness of a single contour pointand all threads execute the same
code on a different data. This is an ideal data-parallel task and is executable in the GPGPU
(General-Purpose Computing on Graphics Processing Units [23]).

3. At the end of each iteration, the algorithm selects the contour point with the highest fitness
value. It can use the ”atomicMax” function of the GPGPU to make the threads calculate
the highest fitness. This point will expand the region in the next iteration.

4

The iteration goes until the region reaches the maximum size, which is given by a parameter.
After each iteration, a region level fitness function is alsoevaluated based on the intensity dif-
ferences between the inner and outer contour of the region, and the circularity of the candidate
region. Finally, the result of the region growing function is the state where the maximum fitness
was reached (after each iteration it has stored the actual region level fitness value in an array).

3.2. GPGPU implementation

As visible in the pseudo code (see Algorithm 1), the number ofthreads is equal to the size
of the contour. This number is usually less than 500; therefore, if we want to utilize the whole
processing power of the GPGPU, we need to start more threads.This is possible if we use
a higher level of parallelism, and execute more than one region growing at the same time (in
separate GPU blocks). The adjacent seed points can cause problems, since the parallelized search
of those can result in overlapping cell nuclei, which is unacceptable. Fortunately, the maximum
radius of a cell nucleus is known (it is an input parameter of the search procedure, calledRMAX).
Hence, we can presume that searches started from two or more seed points (where distances
between these points are more than 4∗ RMAX) can be considered as independent searches and
can be launched in a parallelized way. Using this technique,we can use thousands of threads,
leading to a very high GPU performance.

The results of this new implementation are practically the same as for the original one, there-
fore the accuracy is the same. We ran several tests in different images using the CPU implemen-
tation (Intel Core-i5 2400 processor, with four cores) and the GPU implementation (Gigabyte
GTX580, with 480 cores). The third and fourth columns of Table 1 show the run-times. These
depend heavily on the attributes of the tissue sample image (size, number of nuclei, etc.), there-
fore it would be better to use a relative measurement unit. The unit we used was that we calcu-
lated how long it took relatively to process one pixel of the image. The next two columns show
these relative values, and the last column contains the difference between the CPU and the GPU
run-times. As can be seen, the data-parallel version is usually two to three times faster than the
original one. As it is also visible, the GPU implementation gives better results for large images.
When using images of 1024x1024, 2048x2048 and 4096x4096 pixels, the average relative run-
times are 0.0154/0.009/0.008 ms/pixel, respectively; meanwhile, the same values with the CPU
implementation are 0.025/0.034/0.029 ms/pixel, respectively.

3.3. Parameter optimization

The region growing algorithm prepared this way has several parameters, and it is very sen-
sitive to the appropriate settings. Fine-tuning of these isas important as the previously men-
tioned speed increase. We have 27 mutually independent parameters (details of the different
pre-processing image filters, maximal contrast length and cell nucleus candidate size, parame-
ters of intensity contrast dimensions, etc.) with predefined target sets, and our aim is to search for
a set of parameters that gives the best possible accuracy. Due to the large number of parameters
and their reasonably large target set, defining the values manually seems hopeless, so we have
developed an evolutionary algorithm to find the optimal values. This evolution-based algorithm
was used to successfully determine a set of significantly better parameters than the manually
adjusted ones.

Briefly, the main attributes of the genetic algorithm used were:

• Representation of chromosomes: We stored 27 genes inside a chromosome, where ev-
ery gene actually represents one of the region growing parameters. Every parameter is

5

separately encoded and the functionality of the different genes does not depend on their
location inside the chromosome.

• Initial generation of genetic algorithm: The first generation was generated by randomly
generated chromosomes. Some of the parameters naturally have upper and lower bounds
(cell nuclei size, cell nuclei radius, cell nuclei circularity, average intensity, etc.). To de-
termine these limits, we have done some statistical analysis on the annotated cell nuclei
of the already presented Gold Standard slides. For example,regarding the sizes, 99.5%
of the cell nuclei are between 34 and 882 pixels. Based on these results, the actual values
of genes were chosen using Gaussian distribution within these intervals. Some of the pa-
rameters are downright technical; in these cases we use purerandom numbers between the
technically feasible intervals.

• Implementing selection operator: For parent selection, weused the well-known roulette
wheel method where every chromosome has a slot that is sized proportionally according
to its fitness value, based on Equation 2 (wherePi is the probability of selecting theith

chromosome,Fk is the fitness value for thekth chromosome, andMin(F) is the smallest
fitness value for the generation).

Pi =
Fi − Min(F)

∑

k(Fk − Min(F))
(2)

• Implementing crossover operation: We used uniform crossover, where we combine whole
genes from the previously selected parents. For every gene,a random number determines
which parent’s gene is inherited. Genes from the parent withhigher fitness value have a
proportionally higher probability of being inherited.

• Implementing mutation operator: The probability of a mutation is 10%, and the size of the
mutation can be small, medium-sized or large (with a 60%, 30%or 10% chance, respec-
tively). The exact values of these mutations cannot be defined in a general form, because
the values of the parameters are very different. Therefore every parameter has its own
mutation range.

We started the genetic algorithm with 3000 chromosomes in the initial generation, and 300 chro-
mosomes in every following generation. Every parameter setwas tested against 11 representative
image tissues. After 440 generations (this took approx. 3948 working hours), the system cannot
give better results, therefore we stopped the search. The best accuracy reached at 83.6%, which
is significantly better than the accuracy of the already existing (manually optimized) parameter
set (78.1%) [24, 25].

4. Using multiple GPGPUs

4.1. Naive implementation

To gain maximal performance, it would be better to use more than one graphics card [26]. We
have developed two protocols for multi-GPGPU operations. The first is based on the requirement
that we need the same result as with the single GPGPU version.This is possible when the
main process itself remains unchanged. Only the previouslymentioned independent parts are
expanded, so that they are processed at the same time by not only one but all GPUs.

6

This raises many problems. Fundamentally, this is because the GPGPUs work in independent
memory areas. The trivial solution for this problem would bea full synchronization after every
processing step, which makes a full copy between the independent memory areas. The naive
implementation works as follows:

1. The seed point search algorithm searches for the points from which the region growings
can be started.

2. Because the region growings that start from these points are completely independent, they
can be distributed in any way among the available GPGPUs.

3. We can start as many blocks in each GPGPU as the number of seed points that the given
GPGPU has.

4. All GPGPUs copy the processed memory regions into the global memory. Thanks to the
seed point selection, all nuclei currently found are quite far from each other. Therefore,
there are not any overlapping areas in the different GPGPUs. Thus, we do not expect any
memory transfer conflicts.

5. After each GPGPU is done, they have to wait on each other using a global synchronization.

6. All GPGPUs refresh their private memory region using the data from the global memory.

7. Then, the next iteration can be started.

This method is easy to implement, but the effectiveness raises a number of questions. The biggest
problem is that quite a large amount of data exchange is necessary. This is because all of the
GPGPUs store the whole image, so that during the update process, all of them have to transfer
all changed data from the other devices. The copy itself cannot be solved efficiently, because
the detected nuclei candidates are not placed in a single contiguous area (and the shapes of
these nuclei are unspecified). Therefore, the best solutionis to copy lists of detected points
(additionally, it makes it more difficult that the region growing use several auxiliary images, so
we have to copy more bytes in case of one pixel).

This method is easy to implement; however due to the large number of memory operations,
it is expected to be correspondingly much slower than the next version (details can be found in
our previous article [27]).

4.2. Split-and-merge method

To achieve the fastest possible solution, we have to provideas great independence for the
GPGPUs as possible. To this end, another option may be to simply divide the whole image into
smaller slices (tiles) and to distribute these between the devices. Once processing is complete, we
have to concatenate the results. The well-known name of thisprocedure is the split-and-merge
method [28]. There may be problems near the edges of images, but we can use several techniques
to manage the overlaying parts.

We should ensure that the region growings started at the edgeof the tiles do not affect the
results of the region growings started in different GPGPUs. Fortunately, this is easily met because
we know the maximum radius of any cell nucleus (RMAX). To determine this value, we can use
the annotated cell nuclei of the Gold Standard images. We have done this earlier, in the phase
of preparing initial generation for the parameter optimizing genetic algorithm. Based on the

7

processing of 7889, we set the value ofRMAX to 30 pixels (in fact, there was one larger nucleus,
whose radius was 31.9 pixels, but using this parameter valueincreases the number of false-
positive hits, therefore it is better to use the 30 pixels limit).

Hence, any two region growings can be started in parallel if the distance between the seed
points is at least 4∗ RMAX. Therefore we only have to split the entire image into smaller sub-
images (as large as acceptable for the GPGPUs) using 4∗ RMAX pixels wide overlapping areas.
This area will be important later in the merge phase, as this can ensure that no cell nuclei start
from non-overlapping areas of one GPGPU that has pixels in the non-overlapping area of another
GPGPU.

The main steps of the algorithm:

1. Division of the whole image based on the previously mentioned overlapping technique and
sending these image parts to the GPGPUs.

2. Execution of the original region growing algorithm in allGPGPUs (processing all accept-
able seed points).

3. Copying the processed memory areas into the global memory. This is not an independent
task for the GPGPUs, because the overlapping areas can contain overlapping cell nuclei
(and based on the processing order of the GPGPUs, these overlapping results may be
different).

4. Filtering of the cell nuclei candidates. In the next step we have to select some of the
remaining nuclei candidates, based on the following rules:1) there must not be any over-
lapping nuclei in the result, and 2) the accuracy of this result must be the maximal available
accuracy.

The disadvantage of the designed algorithm is that the results may no longer be identical to the
results provided by the traditional sequential algorithm.During the selection of non-overlapping
cell nuclei, we have to reject certain nuclei candidates. Moreover, the remaining accepted can-
didates may differ from the sequential result. However, it is important to note that this does not
mean that the new procedure has less precision. This only means that the result may be another
acceptable solution.

However, this approach promises several advantages. For our purposes, the most important
benefit is the expected speed-up of processing. There are no synchronization steps between the
GPGPUs. Therefore, all devices can work at their peak power.There are some additional costs
(more than one GPGPU process the same overlapping area and the cost of the merge phase);
however, these are not significant.

Another benefit of this method (and that is the reason why we implement this), is the possibil-
ity to process the input image by smaller distinct parts. It is important because the high memory
requirement is a huge disadvantage of the region growing. The full sized source images are quite
large (more than 200MB by image), and during the processing several copies are needed (mod-
ified by some filters). This all leads to the inability to use traditional region growing for these
full-sized images. There is not enough memory for the entireimage and the copies (especially
in the GPGPU memory). Compared to the previous procedure, this method can also be used to
solve this problem. As the processing of each of the sub-images is completely independent, these
are executable in any order (one-by-one or parallel). As a result, in case of large images and lim-
ited resources, region growing is also applicable. For all of these reasons, we have implemented
this version of parallel region growing and have done several tests with this application.

8

5. Implementation of the split-and-merge method

The method itself consists of two main parts, the division and the merge. In the first step, we
have to decompose the whole image into smaller parts (with some overlapping areas), and we
can process these through the GPGPUs. In the next step, we have to prepare the final solution by
merging the results of the separate smaller images.

5.1. The split phase

The split phase contains two steps: the cutting up phase, andthe cell nuclei detection phase.
The CPU processes the cutting up. The input is the whole tissue sample image and the output
represents the overlapping parts. This is a simple operation; the only question is the size of the
sub images and the width of the overlapping section.

The size of the tiles must be as large as possible. We have somehardware limitations because
we have to store about ten copies of the image (several variations of the same image using filters
for the seed point search, the region growing, score calculation, etc.). We need fast access to
the pixels; therefore, we cannot use a compression method. Hence, we can easily calculate the
memory requirements. We did several tests and the 2048x2048pixels size looks like the best
choice. It is not too large, so we can store the images in oldergraphics cards (with 1GB internal
memory or less), but it is large enough for optimal processing (the ratio of the overlapping and the
non-overlapping part is ideal). If we use smaller tiles, then we can use more parallel processing
units, but in practice, we usually work with input images 8192x8192 pixels, only two GPGPUs,
and one CPU. Therefore, the tile size mentioned above is acceptable.

The next required parameter is the width of the overlapped area (see Figure 1). It is worth
choosing it as narrow as possible because this will cause less overlapping cell nuclei candidates.
We know the maximum radius of a cell nucleus (RMAX = 30 pixels) and it is obvious that two
region growings that start from at least a 4∗RMAX distance cannot have any effect on each other.
Therefore, we use 120 pixel wide overlapping areas.

The CPU creates all the required tiles and save them as separate files (in the future we can
optimize this to use memory to memory transfers). The next step is the nuclei detection for all
images. For this, we have to distribute the available tiles between the processing units. We have
implemented a scheduler based on the common producer-consumer pattern [29]. This pattern
is used in order to handle multiple client requests simultaneously. There are two main roles:
those that produce data and those that consume the data produced. Data queues are used to
communicate between the participants. In the current phase, we have only one producer. But,
in the future, we would like to improve the implemented system to create a fully distributed
architecture - a dedicated cell nuclei detection cluster (consumers) where the client applications
can send the input images (producers).

Technically, the implementation goes as follows: after loading the input tissue image, an
algorithm starts to partition it into smaller tiles according to the above and puts these slides into
a processing queue. In the meantime, several processes are running (one for all GPUs and one
for the CPU) and waiting for the input in the queue. Each process gets one task from the queue
and runs the already implemented region growing. The scheduler listens to the task completion
signals and when each is finished, it starts the next step - themerging of the intermediate results.

5.2. The merge phase

In the merge phase, we have to merge the intermediate resultsinto the final result. The input
is the set of the tiles and lists containing the detected cellnuclei candidates. There can be nuclei

9

in the overlapping area; therefore, we cannot merge the images directly. We have to handle all
nuclei as separate objects and make a decision to keep the given nucleus or reject it. The rules of
the merge algorithm are the following:

1. Processing the non-overlapping regions: We can accept those nuclei whose enlargement
did not start from an overlapping area, without any further checks. It is obvious that the
distance of the seed points must be at least 4∗RMAX and therefore these nuclei cannot meet
in the most unfortunate cases. So these nuclei can be handledas independent from the
others. Hence, these are immediately acceptable (see ”Typea” and ”Type b” in Figure 1).

2. Processing overlapping regions: We need some further checks in these cases. Usually
there are several nuclei which are in the overlapping area but after the nuclei detection
these are not overlapped with others from other tiles (see ”Type c” in Figure 1). In these
cases, we can simply accept these nuclei. However, we need some additional calculations
if there are some nuclei candidates from different tiles overlapping each other (see ”Type
d” in Figure 1). If the pixels of these nuclei are perfectly identical (this is the ideal case),
then we have to accept one of them and reject the other. Unfortunately, in most cases
these nuclei partially overlap each other and in these caseswe have to decide which one
to accept and which one to reject. This decision is complicated by the fact that in several
cases we have not just two but three or more overlapping nuclei. In practice, these nuclei
often form a long chain and it is difficult to decide which ones to accept.

In the latter case, there can be thousands of overlapping nuclei. Therefore, we have implemented
a backtracking based solution. First, we have to collect alloverlapping nuclei and execute a
clustering procedure to find the sets of nuclei in which all nuclei have some effect on each other.
We can represent this problem as a graph where the vertexes represent the nuclei and there is
an edge between two vertexes if the corresponding nuclei overlap each other. In this problem
space, our task is a classical component search. There are several clustering techniques; we
use a modified version of the well-known Kruskal algorithm [30]. In the first step, we create
several sets where each vertex in the graph is in a separate set. After this, we start a loop and in
each iteration we look at the edges continuously. If there isany edge connecting two different
components, we merge them. After each iteration, the remaining components represent sets of
cell nuclei in which there is a way across the overlapping sections between every nucleus.

After that, we have to sort out one set of nuclei from each cluster in which there are not any
overlapping cell nuclei and the accuracy of the set is maximal, where the accuracy of the set is
the aggregate value of the accuracy of all nuclei in the set (see Figure 2).

We have designed a score function to evaluate the nuclei candidates. The evaluation is based
on the size (in pixels), radius, and circularity of the nucleus. To determine the appropriate weight-
ing factors, we do an examination of the size, radius, and circularity of all nuclei in the already
presented Gold Standard slides (colon tissue sample imagesmanually annotated by pathologists).
We have examined all nuclei in these images and calculated the values of size (Equation 3), ra-
dius (Equation 4) and circularity (Equation 5)) for each, and have drawn the distribution into 100
equally sized intervals where every interval has the following values:

Tsize[i] =
number o f nuclei in the ith size interval

number o f nuclei
(3)

10

Tradius[i] =
number o f nuclei in the ith radius interval

number o f nuclei
(4)

Tcircularity[i] =
number o f nuclei in the ith circularity interval

number o f nuclei
(5)

As expected, these values confirm the Gaussian distribution. We assume that the detected objects
are as more like nucleus as many other nuclei exist with similar parameters. Therefore, we
calculate this probability according to the following (Equation 6) (in the future we will replace
this method with a fuzzy [31] based one):

(6)S core(X) =Wsize∗ Tsize[Xsize] +Wradius∗ Tradius[Xradius] +Wcircularity ∗ Tcircularity[Xcircularity]

where

• X:Nucleus candidate.

• Wsize,Wradius,Wcircularity: Weighting factors for size, radius and circularity.

• Tsize,Tradius,Tcircularity: Density tables for size, radius and circularity.

• Xsize,Xradius,Xcircularity: Size, radius and circularity of nucleus X.

We can use this score value to evaluate one nucleus and the sumof these score values to evaluate
a set of nuclei. Our task is to find the best non-overlapping subset of the whole nuclei candidate
set, where this summarized score value is maximal.

We have developed an algorithm based on the backtracking method [32] to find the best
subset of non-overlapping nuclei. The number of subtasks equals the number of cell nuclei can-
didates in the examined cluster. Every subtask represents the decision that the corresponding
nucleus is accepted or rejected. The backtrack search examines all potential solutions quite effi-
ciently, and relies upon these search to select the combination of nuclei with the largest aggregate
accuracy (see Algorithm 2).

In the case of overlapping nuclei, the outcome is always the best combination. We merge
these sets with the already accepted nuclei and this leads tothe final result of the whole merge
task.

It is worth noting that in the clustering phase, we create several clusters of cell nuclei for
further processing. There are not any overlapping cells in two different clusters. Therefore,
we can consider these as independent groups. Thus, we can do the non-overlapping cell nuclei
selection parallel for each group. It is hard to create a backtracking algorithm for the GPU;
therefore, we have only a CPU implementation. However, based on the independence of the
clusters, we can use the multi-core capability of the CPU to process more than one cluster at the
same time. This can easily decrease the required processingtime.

6. Evaluation of the algorithm

6.1. Accuracy test

Using the split-and-merge method does not always give the same result as the normal se-
quential region growing, but this does not necessarily meanthat it is less accurate. We can use
the already mentioned Gold Standard images to check the accuracy. Unfortunately, we do not

11

have any high-resolution annotated samples; therefore, weuse smaller images with modified pa-
rameters: we set the tile size smaller than the recommended size (1024x1024 pixels instead the
suggested 2048x2048 pixels). The widths of the overlapped regions are all the same (120 pixels).

In these tests, we use one CPU core to measure the ”original accuracy” and one CPU+ two
GPUs to measure the split-and-merge accuracy. We have used the evaluation method described
in our previous paper [16]. The results indicate that the newtechnique does not cause significant
degradation of the accuracy (Table 2).

We do not have any large annotated images; therefore, we cannot measure the absolute value
of accuracy in these cases. However, we can use the results ofthe already existing sequential
CPU based application (verified by several tests and used by real-world applications for several
years). As it is clearly visible in Table 3, the differences between the results are not significant and
are usually less than 2%. It is worth noting that this does notmean lower accuracy. Sometimes
the multi-GPU algorithm gives better results.

It has been noted that the split-and-merge method has only one limitation: we cannot guar-
antee that the result of this new algorithm will be exactly the same as the original sequential one.
However, that posterior tests have good results, the difference is not significant and the speed-up
is very impressive.

6.2. Speed test

Developing GPGPU codes is usually expensive and unconvincing; it is worth doing only if
the GPGPU based application is spectacularly faster. We do several speed tests to check the
speed-up and the results are very promising. The details of our runtime measuring method are as
follows: we have done five independent tests on the given tissue images (as the standard devia-
tions show the values are reliable). According to real-world conditions, we take into considera-
tion all operations between the start and the end of the algorithm (load image from file, splitting,
distribution, region growing, result reporting, merging). We use three devices in different con-
figurations: CPU1 - Core-i5 2400 processor (4 cores, 3.1 GHz), GPU1 andGPU2 - Gigabyte
GTX580 graphics cards (480 cores). It is hard to compare the speed of two algorithms running
on different hardware, especially in this case since the CPU and GPUhave drastically different
architectures. We choose these two devices because (at the time of purchase) both represent the
average quality/cost in their own market.

Table 3 also shows the detailed runtimes of the split-and-merge implementation using only
CPU. The split part consists of the following: load the image from the hard disk, split it into
smaller overlapping tiles, and save these onto the hard disk(most of the elapsed time is required
by the file operations). The region growing part is the runtime of the already existing nuclei
detection algorithm. The merge part consists of the following steps: loading the region growing
result from the hard disk, collecting overlapping nuclei clusters, and finding the optimal subset of
non-overlapping nuclei. As it is visible, the required additional time for the splitting and merging
does not cause significant increases in the full execution time.

We have done some additional examinations, using multiple devices with the split-and-merge
method. The tested configurations were as follows: onlyCPU, only GPU1, CPU + GPU1,
GPU1 + GPU2, CPU + GPU1 + GPU2. We have run the image segmentation on 30 images
of different resolutions (2048x2048, 4096x4096, and 8192x8192 pixels). The results (see Ta-
ble 4) are promising. The processing time decreased drastically, and the CPU and the GPUs
can work together very efficiently. Sometimes, in the case of 2048x2048 pixel size images, the
CPU+GPU1+GPU2 version was slower than theGPU1+GPU2 version. However, this was only

12

caused by some scheduling problems: GPUs are more than twiceas fast as the CPU; there-
fore, untilCPU finished the segmentation ofTile1, GPU1 finished withTile2 andTile4, GPU2

finishedTile3, and the GPUs have to wait for the CPU.
As expected, configuration with more devices usually needs less time to process all the tiles.

In the case of the GPUs, the speed-up is quite linear, which isnot surprising because all the GPUs
can work on the tiles independently. Therefore, these devices can use all of their processing
power. This is not exactly true for the CPU, because it is slower than the GPUs. On the other
hand, GPGPU implementations cause some load on the CPU too.

6.3. Tile size test

Our preliminary tests showed that the advantage of the GPU isgreater in the case of large
images. Therefore, we expect larger tile size to lead to better performance. To demonstrate this,
we did some additional tests using different tile sizes (2048x2048 pixels and 4096x4096 pixels)
on two full-sized tissue sample images (8192x8192 pixels).The tested configurations were the
same as before: onlyCPU, onlyGPU1, CPU+GPU1, GPU1 +GPU2, CPU+GPU1 +GPU2.
Table 5 shows the run-time values for both tile sizes, and theratio of these values.

As can be seen, the CPU implementation was not able to benefit from the larger tile size,
and it became even slower. In fact, the CPU code operates at the same speed, but some adverse
circumstances degrade its performance. For example, thereare a lot of empty areas in these full-
sized images, and in the case of large tiles, the CPU has to rescan these areas (in the seed point
search phase) more times than in the case of small tiles. Obviously, the GPUs also have to deal
with this problem, but the seed point search is very parallelizable, therefore it is extremely fast
in the graphics cards.

It can also be seen, that GPUs need less time to process the whole image using larger tiles.
On the one hand, larger tiles mean more independently runnable region growing, fewer kernel
launches, etc. On the other hand, the merge part is affected, because in the case of large tiles,
the ratio of the overlapping areas is smaller. As expected, the GPU implementations are almost
twice as fast in these cases. The best configurations are the 2GPU and the CPU+2GPU using the
2048x2048 pixels tile size (as was previously discussed, sometimes the CPU+2GPU version is a
bit slower than the 2GPU version due to the unfortunate scheduling, but this is not general).

13

Summary

The aim of our research is developing a new data parallel region growing algorithm that can
be implemented even in a GPGPU environment and which is capable of segmenting HE stained
cell nuclei and identifying their exact locations and sizes. The new method has three levels
of parallelization: 1) parallelization of the region growing method itself to use one thread for
processing of each contour point, 2) starting more than one region growings in the GPGPU at
the same time to utilize the processing power fully, and 3) using multiple GPGPUs based on the
split-and-merge method.

As the results indicate, the split-and-merge technique does not cause significant degradation
of the accuracy (the average difference between the accuracy of the original one-step processing
method and the new method is about 0.03%). In the case of one CPU, the speed-loss caused
by the split-and-merge technique is insignificant comparedto the runtime of the original region
growing.

The advantages of this technique are shown in the case of using multiple devices. As ex-
pected, a configuration with more devices usually needs lesstime to process all the tiles. In the
case of the GPGPUs, this speed-up is quite linear, and additionally we can use the CPU for pro-
cessing as well. Using the best configuration means about 6X speed-up (see Figure 3). Due to
the lack of required hardware configurations, we cannot check configurations with more than two
graphics cards, but it is expected that this trend continuesfor up to four GPGPUs (more GPUs
can overload the CPU).

Another advantage of the new procedure is that we can processfull sized colon tissue im-
ages. This was previously impossible due to the high memory requirement of the original region
growing method. This is a very useful improvement for practical purposes.

The disadvantage of this technique is the special hardware requirement. Unfortunately, we
cannot create a widely usable demo application because the system needs special hardware de-
vices and Windows drivers (NVidia graphics cards with Fermibased cores). In practice, this is
not an issue as these hardware elements are available for theend users.

14

References
[1] S. D. Olabarriaga, A. W. M. Smeulders, Interaction in thesegmentation of medical images: A survey, Medical

Image Analysis, vol. 5, no. 2, 2001, pp. 127–142.
[2] G. Placidi, Adaptive compression algorithm from projections: Application on medical greyscale images, Comput-

ers in Biology and Medicine, vol. 39, no. 11, 2009, pp. 993–999.
[3] P. Suapang, K. Dejhan, S. Yimmun, Medical image archiving, processing, analysis and communication system for

teleradiology, in: IEEE Region 10 Conference (TENCON), 2010, pp. 339–345.
[4] A. Bogárdi-Mészöly, A. Rövid, H. Ishikawa, S. Yokoyama, Z. Vámossy, Tag and topic recommendation systems,

Acta Polytechnica Hungarica, vol. 10, no. 6, 2013, pp. 171–191.
[5] M. Gurcan, J. Kong, O. Sertel, B. Cambazoglu, J. Saltz, U.Catalyurek, Computerized pathological image analysis

for neuroblastoma prognosis, in: AMIA Annu Symp Proc, 2007,pp. 304–308.
[6] G. Valcz, I. Bándi, B. Wichmann, A. Patai, D. Szabó, G. Kiszler, M. Kozlovszky, B. Molnár, Z. Tulassay, Auto-

mated detection of epithelial changes in colorectal carcinoma, Zeitschrift für Gastroenterologie, vol. 50, no. 5, 2012,
pp. 1–5.

[7] Z. Benyó, I. Benyó, M. Bolla, G. Lakatos, P. Nagy, L. Telegdi, J. Tick, Application of computational statistics to
the investigation of tumors of the digestive system, in: Proceedings of the Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 1991, pp.1343–1344.

[8] A. Tanács, K. Palágyi, A. Kuba, Medical image registration based on interactively identified anatomical landmark
points, Machine GRAPHICS & VISION, vol. 7, no. 1-2, 1998, pp.151–158.

[9] W. Sun, P. Lal, Recent development on computer aided tissue engineering — a review, Computer Methods and
Programs in Biomedicine, vol. 67, no. 2, 2002, pp. 85–103.

[10] M. Kowal, P. Filipczuk, A. Obuchowicz, J. Korbicz, R. Monczak, Computer-aided diagnosis of breast cancer based
on fine needle biopsy microscopic images, Computers in Biology and Medicine, vol. 43, no. 10, 2013, pp. 1563–
1572.

[11] M. El Adawy, Z. Shehab, H. Keshk, M. El Shourbagy, A fast algorithm for segmentation of microscopic cell
images, in: ITI 4th International Conference on Information Communications Technology (ICICT), 2006, pp. 1–1.

[12] J. Hukkanen, A. Hategan, E. Sabo, I. Tabus, Segmentation of cell nuclei from histological images by ellipse fitting,
in: 18th European Signal Processing Conference (EUSIPCO),2010, pp. 1219–1223.

[13] R. Pohle, K. D. Toennies, Segmentation of medical images using adaptive region growing, in: M. Sonka, K. M.
Hanson (Eds.), Medical Imaging 2001: Image Processing, Vol. 4322 of Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, 2001, pp. 1337–1346.

[14] S. Szénási, Z. Vámossy, M. Kozlovszky, Preparing initial population of genetic algorithm for region growing
parameter optimization, in: 4th IEEE International Symposium on Logistics and Industrial Informatics (LINDI),
2012, pp. 47–54.

[15] K. Masood, N. Rajpoot, K. Rajpoot, H. Qureshi, Hyperspectral colon tissue classification using morphological
analysis, in: International Conference on Emerging Technologies (ICET), 2006, pp. 735–741.

[16] S. Szénási, Z. Vámossy, M. Kozlovszky, Evaluation and comparison of cell nuclei detection algorithms, in: IEEE
16th International Conference on Intelligent EngineeringSystems (INES), 2012, pp. 469–475.

[17] E. Gabriel, V. Venkatesan, S. Shah, Towards high performance cell segmentation in multispectral fine needle aspi-
ration cytology of thyroid lesions, Computer Methods and Programs in Biomedicine, vol. 98, no. 3, 2010, pp. 231–
240.

[18] S. Di Cataldo, E. Ficarra, A. Acquaviva, E. Macii, Automated segmentation of tissue images for computerized ihc
analysis, Computer Methods and Programs in Biomedicine, vol. 100, no. 1, 2010, pp. 1–15.

[19] R. Adams, L. Bischof, Seeded region growing, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, no. 6, 1994, pp. 641–647.

[20] O. Kutter, R. Shams, N. Navab, Visualization and GPU-accelerated simulation of medical ultrasound from CT
images, Computer Methods and Programs in Biomedicine, vol.94, no. 3, 2009, pp. 250–266.

[21] O. Fluck, C. Vetter, W. Wein, A. Kamen, B. Preim, R. Westermann, A survey of medical image registration on
graphics hardware, Computer Methods and Programs in Biomedicine, vol. 104, no. 3, 2011, pp. 45–57.

[22] S. Szénási, Z. Vámossy, M. Kozlovszky, GPGPU-baseddata parallel region growing algorithm for cell nuclei
detection, in: IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 2011,
pp. 493–499.

[23] A. Eklund, P. Dufort, D. Forsberg, S. M. LaConte, Medical image processing on the GPU – past, present and future,
Medical Image Analysis, vol. 17, no. 8, 2013, pp. 1073–1094.

[24] S. Szénási, Z. Vámossy, Implementation of a distributed genetic algorithm for parameter optimization in a cell
nuclei detection project, Acta Polytechnica Hungarica, vol. 10, no. 4, 2013, pp. 89–86.

[25] S. Szénási, Z. Vámossy, Evolutionary algorithm foroptimizing parameters of GPGPU-based image segmentation,
Acta Polytechnica Hungarica, vol. 10, no. 5, 2013, pp. 7–28.

15

[26] T. D. R. Hartley, U. V. Çatalyürek, A. Ruiz, F. D. Igual, R. Mayo, M. Ujaldon, Biomedical image analysis on a
cooperative cluster of GPUs and multicores, in: P. Zhou (Ed.), ICS, ACM, 2008, pp. 15–25.

[27] S. Szénási, Distributed implementations of cell nuclei detection algorithm, in: Proceedings of the 1st International
Conference on Image Processing and Pattern Recognition (IPPR), 2013, pp. 105–109.

[28] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, 2nd Edition, Chapman & Hall,
1998.

[29] N. Wirth, Toward a discipline of real-time programming, Commun. ACM, vol. 20, no. 8, 1977, pp. 577–583.
[30] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the

American Mathematical Society, vol. 7, no. 1, 1956, pp. 48–50.
[31] E. Tóth-Laufer, M. Takács, I. Rudas, Neuro-fuzzy risk calculation model for physiological processes, in: IEEE

10th Jubilee International Symposium on Intelligent Systems and Informatics (SISY), 2012, pp. 255–258.
[32] S. S. Skiena, The Algorithm Design Manual, Springer, 2008.

Acknowledgements

This work makes use of results produced by the Hungarian National Technology Programme,
A1, Life sciences, the “Development of integrated virtual microscopy technologies and reagents
for diagnosing, therapeutical prediction and preventive screening of colon cancer “Hungarian
National Technology Programme, A1, Life sciences, (3dhist08) project and théOE-RH 1104/2-
2011 project.

16

Figures and Tables

Algorithm 1 Data parallel region growing

1: function RegionGrowing(seedpoint)
2: region← {seedpoint}; last← seedpoint; best← ∅; contour← ∅
3: while ¬S topCondition(region, contour) do
4: GetRegionProperties(region, ref Iregion, ref RMAX, ref center)
5: parallel execution wherethreadIndexin (1,2,3,4)
6: if InsideImage(last+ DthreadIndex) then
7: new← last+ DthreadIndex

8: if new/∈ region∪ contourand Processable(new) then
9: contour← contour∪ new ⊲ Contour expansion

10: end if
11: end if
12: end parallel execution
13: Cmax← 0
14: parallel execution wherethreadIndexin (1, 2, .., |contour|)
15: CP← contour[threadIndex]
16: C←

∣

∣

∣ICP − Iregion

∣

∣

∣ + α ∗ (d(CP, center)/RMAX) ⊲ Score
17: CMAX← AtomicMax(C,CMAX) ⊲Maximal score race
18: end parallel execution
19: parallel execution wherethreadIndexin (1, 2, .., |contour|)
20: if C = CMAX then ⊲Who wins?
21: last← contour[threadIndex]
22: end if
23: end parallel execution
24: region← region∪ last ⊲ Expand region
25: contour← contour\ last ⊲ Reduct contour
26: if best= ∅ or S core(region) > S core(best) then
27: best← region ⊲ First or better score
28: end if
29: end while
30: return best
31: end function

Variables and functions of the pseudocode:
• Iregion: The average intensity of the region.
• RMAX: Maximal radius of the region.
• center: Mass center of the region.
• D: The 4 directionsD1 = (0, 1);D2 = (1, 0);D3 = (0,−1);D4 = (−1, 0).
• IP: Intensity of pixel P.
• InsideImage(P): Result is true if P is in the picture.
• Processable(P): Result is true if P is not part of any other regions.
• α: Weighting factor.
• d(a, b): The (Euclidean) distance between points a and b.
• S core(region): Fitness value of the region (based on size, intensity etc.).
• S topCondition(region, contour): Checks the stopping conditions of the region growing

procedure (size, available points, etc.).
17

Algorithm 2 Backtracking algorithm for non-overlapping nuclei filtering

1: procedureBacktracking(level, ref R, ref Found,ref OPT)
2: i ← 0 ⊲ 0 - accept/1 - reject this nucleus
3: while i ≤ 1 do
4: j ← 1
5: while (j < level) and (Rj = 0 or ¬Overlap(NClevel,NCj) do
6: j ← j + 1
7: end while
8: if j = levelthen ⊲ Acceptable together
9: Rlevel← i ⊲ Store this result

10: if level= N then
11: if ¬Foundor S core(R) > S core(OPT) then
12: Found← true ⊲ First or better result
13: OPT← R
14: end if
15: else
16: Backtracking(level+1, ref R, ref Found,ref OPT);
17: end if
18: end if
19: i ← i + 1
20: end while
21: end procedure

Variables and functions of the pseudocode:
• N: Number of cell nuclei candidates in the given cluster.
• NCi : The ith cell nucleus candidate.
• level: Index of the currently examined nucleus candidate (1≤ level≤ N). Initial value is

1.
• Overlap(NC1,NC2): Result is true ifNC1 andNC2 overlap each other.
• R: Vector of N integers. Contains the actual solution (Ri is 0 if the ith cell nucleus is

rejected and it is 1 if theith cell nucleus is accepted).
• Found: Becomes true when the algorithm finds the first valid solution. Initial value is

false.
• OPT: Contains the optimal solution (format is the same as the format ofR).

18

Figure 1: Splitted HE stained colon tissue image. Green area: overlapped area. Yellow rectangle:
location of Tile 1. Red areas: cell nuclei candidates using aseed point from Tile 1. Blue areas: cell nuclei

candidates using a seed point from Tile 2. Type a: cell nucleicandidates completely located in the
non-overlapping area. Type b: cell nuclei candidates usingseed points from the non-overlapping area but
grown into the overlapping area. Type c: non-overlapping cell nuclei candidates in the overlapping area.

Type d: overlapping cell nuclei candidates.

19

Figure 2: Result of the backtrack algorithm. a) Input: overlapping cell nuclei candidates (nuclei with
different colours are from different GPGPUs) b) Output: the optimal solution. Non-overlapping cell nuclei

candidates with maximum summarized score.

20

Figure 3: Average runtime for different configurations in case of full sized images (8192x8192pixels)
using recommended tile size (2048x2048 pixels).

21

Table 1: Runtimes of the CPU and the GPU implementations for different image dimensions. Relative
runtime means how long it took to process one pixel. Speed-upis the ratio of these relative values.

Slide ID
Dim.
(pixel)

Runtime
(ms)

Rel. runtime
(ms/pixels) Speed-up

CPU GPU CPU GPU
10359-04ep 1024 21584 15050 0.0206 0.0144 1.4

10393-04ep 1024 24676 17204 0.0235 0.0164 1.4
1050-04IIadenomavill+dyspl 1024 18428 11950 0.0176 0.0114 1.5

1160-05CRCA-B 1024 31160 17298 0.0297 0.0165 1.8
11700-04CRCA-B 1024 21942 13764 0.0209 0.0131 1.6

12138-03Adenomavillosum 1024 20276 14996 0.0193 0.0143 1.4
12532-04CRCA-B 1024 29060 17916 0.0277 0.0171 1.6

2877-04IHyperpl 1024 34470 20240 0.0329 0.0193 1.7
6134-04p 1024 21830 14472 0.0208 0.0138 1.5

8658-04IHyperpl 1024 29402 18418 0.0280 0.0176 1.6
986604Chron 1024 27528 14714 0.0263 0.0140 1.9
986604Crohn 1024 25670 15790 0.0245 0.0151 1.6
9872-04I ep 1024 26718 15342 0.0255 0.0146 1.7

CRCA-B1 1024 35274 17132 0.0336 0.0163 2.1
rossz1013-05CRC-B 1024 33498 19094 0.0319 0.0182 1.8

10359-04ep 2048 141256 41632 0.0337 0.0099 3.4
10393-04ep 2048 140148 38392 0.0334 0.0092 3.7

1050-04IIadenomavill+dyspl 2048 106896 26298 0.0255 0.0063 4.1
1160-05CRCA-B 2048 201184 50144 0.0480 0.0120 4.0

11700-04CRCA-B 2048 131644 35624 0.0314 0.0085 3.7
12138-03Adenomavillosum 2048 85688 32134 0.0204 0.0077 2.7

12532-04CRCA-B 2048 153828 40556 0.0367 0.0097 3.8
2877-04IHyperpl 2048 151172 42892 0.0360 0.0102 3.5

6134-04p 2048 137362 37064 0.0327 0.0088 3.7
8658-04IHyperpl 2048 170760 44454 0.0407 0.0106 3.8

986604Chron 2048 164612 36846 0.0392 0.0088 4.5
986604Crohn 2048 143564 37500 0.0342 0.0089 3.8
9872-04I ep 2048 148648 40100 0.0354 0.0096 3.7
10359-04ep 4096 455175 101688 0.0271 0.0061 4.5

1050-04IIadenomavill+dyspl 4096 525724 140594 0.0313 0.0084 3.7
1160-05CRCA-B 4096 524166 139058 0.0312 0.0083 3.8

11700-04CRCA-B 4096 391826 152480 0.0234 0.0091 2.6
12138-03Adenomavillosum 4096 489434 133166 0.0292 0.0079 3.7

12532-04CRCA-B 4096 418242 134526 0.0249 0.0080 3.1
2877-04IHyperpl 4096 471368 171144 0.0281 0.0102 2.8

6134-04p 4096 909918 77446 0.0542 0.0046 11.7
8658-04IHyperpl 4096 429865 200300 0.0256 0.0119 2.1

986604Chron 4096 341888 98892 0.0204 0.0059 3.5
986604Crohn 4096 339073 139930 0.0202 0.0083 2.4
9872-04I ep 4096 607074 124704 0.0362 0.0074 4.9

CRCA-B1 4096 353276 123358 0.0211 0.0074 2.9

22

Table 2: Comparison of original region growing and split-and-merge method accuracy in the case of Gold
Standard images.

Slide ID Accuracy Difference
Original Split-and-merge

0259-ES-02 69,15% 69.70% 0.54%
0259-ES-03 76.29% 76.48% 0.18%
0259-PR-01 80.82% 80.95% 0.13%
0259-PR-02 83.06% 83.47% 0.42%
1031-ES-01 94.23% 94.11% -0.11%
1031-ES-02 77.29% 77.52% 0.23%
1429-PR-02 70.27% 70.55% 0.27%
2167-ES-01 67.20% 67.15% -0.04%
2167-ES-02 71.95% 71.96% 0.01%
2167-ES-03 75.83% 76.53% 0.70%
2224-PR-01 80.83% 80.71% -0.12%
2224-PR-02 80.21% 80.58% 0.37%
2225-ES-01 84.22% 84.36% 0.14%
2225-ES-02 81.43% 81.46% 0.03%
2225-ES-03 80.52% 80.40% -0.12%
2508-PR-01 83.60% 83.67% 0.07%
2508-PR-02 80.72% 79.83% -0.89%
2819-ES-01 68.73% 68.70% -0.03%
2819-ES-02 76.97% 77.17% 0.20%
2819-ES-03 63.79% 64.15% 0.36%
2819-PR-01 77.25% 78.31% 1.06%
2819-PR-02 80.31% 80.48% 0.17%
2819-PR-03 76.38% 76.58% 0.20%
2856-ES-01 67.80% 68.80% 1.00%
2856-ES-02 75.23% 75.98% 0.75%
2857-ES-01 92.47% 91.36% -1.12%
2857-ES-02 81.86% 80.53% -1.33%
2857-ES-03 83.10% 82.53% -0.57%
2924-PR-01 89.14% 88.20% -0.94%
2924-PR-02 83.20% 82.24% -0.96%
2924-PR-03 75.72% 74.50% -1.22%
3019-PR-01 82.67% 82.64% -0.02%
3019-PR-02 80.91% 80.53% -0.38%
3019-PR-03 93.06% 93.02% -0.04%
3381-ES-01 81.39% 81.39% 0.00%
3381-ES-03 75.63% 75.63% 0.00%
3381-PR-01 65.32% 65.24% -0.08%
3381-PR-02 72.38% 72.34% -0.04%
3381-PR-03 70.68% 70.68% 0.00%
Average 78.25% 78.22% -0.03%

23

Table 3: Results of processing 2048x2048 pixels images. Second column shows the difference of the results
between the original CPU region growing and the new split-and-merge method (using the evaluation

method described in [16], using the original result as the reference and the split-and-merge result as the
test image). The following columns show the detailed and summarized runtime values. The last column

contains the (runtime) ratio of the additional split and merge procedures to the full processing time.

Slide ID Result
diff.

Runtime (ms) S&M
ratioSplit Growing Merge Sum (ms)

10359-04ep 1.61% 18 106033 0 106051 0.01%
10393-04ep 2.35% 18 111103 0 111121 0.01%

1050-04IIadenomavill+dysp 1.82% 15 76976 0 76991 0.01%
1160-05CRCA-B 1.59% 21 157260 0 157281 0.01%

11700-04CRCA-B 1.33% 15 100046 0 100061 0.01%
12138-03Adenomavillosum 2.87% 18 66633 0 66651 0.02%

12532-04CRCA-B 2.00% 18 113923 0 113941 0.01%
2877-04IHyperpl 2.22% 18 126962 0 126980 0.01%

6134-04p 1.48% 18 100417 0 100435 0.01%
8658-04IHyperpl 1.76% 21 126534 0 126555 0.01%

986604Chron2048 1.29% 21 119499 0 119520 0.01%
986604Crohn4096 1.43% 18 113171 218 113407 0.20%

9872-04I ep 2.13% 21 117730 0 117751 0.01%

24

Table 4: Runtime of the split-and-merge method in case of different image sizes and different
configurations.

#
Dimension

(pixel)
Runtime (ms)

CPU GPU CPU+GPU 2 GPU CPU+2 GPU
1 2048 106052 70362 54116 35695 33437
2 4096 220805 148044 92037 75841 60094
3 2048 111122 69557 55373 35340 33224
4 2048 76992 47040 32884 26195 24925
5 4096 424174 240474 160252 121555 107128
6 8192 1083125 660633 431933 337422 278292
7 2048 157282 76262 56325 38893 41673
8 4096 437465 241972 164046 122313 98545
9 2048 100061 62362 46538 31799 31964

10 4096 436925 273936 180174 143498 126996
11 2048 66652 54777 35009 33830 21571
12 4096 288475 245631 136297 124700 95004
13 2048 113942 70421 49835 36092 38700
14 4096 313304 209155 131199 112607 91188
15 2048 126981 75051 49218 39954 34104
16 4096 562331 326736 204569 168311 146081
17 2048 100436 63211 55295 33377 29708
18 4096 203343 143498 89572 72405 54752
19 2048 126556 75135 53888 39633 38457
20 4096 537592 330736 219273 169185 140135
21 2048 119521 62216 46126 31483 34610
22 4096 324692 189275 120909 95128 75794
23 2048 113409 68459 48952 35040 36048
24 4096 426888 258848 171849 134088 116544
25 2048 117752 70343 58902 35552 35015
26 4096 410396 251091 159968 126644 99918
27 2048 156156 85734 65036 47502 47177
28 4096 403251 227576 148390 113976 95378
29 4096 661035 381124 268560 197930 173550
30 8192 691642 483778 294366 248202 198931

∑

9018357 5563437 3680891 2864190 2438943

25

Table 5: Runtime of the split-and-merge method in case of different tile sizes and different configurations.
The size of both images is 8192x8192 pixels. Difference means the runtime ratio for the larger tile size to

the smaller tile size.

Tile Size (pixel) Configuration
Runtime (ms)

Image 1 Image 2 Sum

1024

CPU 1083125 691642 1774767
GPU 660633 483778 1144411

CPU+GPU 431933 294366 726299
2 GPU 337422 248202 585624

CPU+2 GPU 278292 198931 477223

2048

CPU 1305257 789345 2094602
GPU 360850 272111 632961

CPU+GPU 299994 193892 493886
2 GPU 187861 138384 326245

CPU+2 GPU 188910 168561 357471

Difference

CPU 1.20 1.14 1.18
GPU 0.54 0.56 0.55

CPU+GPU 0.69 0.65 0.68
2 GPU 0.55 0.55 0.55

CPU+2 GPU 0.67 0.84 0.75

26

