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Algorithms and Their Effects on Latency
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Abstract—The problem of power management for an embedded
system is to reduce system level power dissipation by shutting off
parts of the system when they are not being used and turning them
back on when requests have to be serviced. Algorithms for this
problem areonline in nature; the algorithm must operate only with
access to data that it has seen so far and without access to the com-
plete data set or its characteristics. In this paper, we present on-
line algorithms to manage power for embedded systems and dis-
cuss their effects on system latency.

We introduce competitive analysis as a formal framework for
the evaluation of various power management algorithms. Compet-
itive analysis does not depend on the distribution of interarrival
times of requests. In this context, we present a nonadaptive on-
line algorithm, analyze its behavior, and show that it is optimal. In
this paper, we also present a lower bound on the competitiveness
of any adaptive algorithm. We show that no adaptive online algo-
rithm can dissipate less than about 1.6 times the power dissipated
by the optimal offline algorithm in the worst case. We also show
that in order for any online algorithm to achieve this lower bound,
it may have to maintain a complete history of the interarrival times
of the requests in the input sequence. Since this is not practical, we
present a simple algorithm that uses only the last interarrival time
to predict the arrival of the next request. We show that this algo-
rithm performs as well as previously proposed heuristics for the
problem; however, we can bound its worst case performance. In
all our formal analysis, we do not model the service time for a re-
quest, i.e., we assume that requests are services instantaneously.

To test the performance of all the proposed algorithms and com-
pare their performance against previously propose heuristics, we
use the disk drive of a laptop computer as an embedded system. In
our experiments, we model service times, i.e., we assume that the
time to service requests is proportional to the size of the request.
Under these conditions, we observed that in some cases a simpler
algorithm that shuts down the system whenever it encounters an
idle period performs better than the proposed adaptive algorithms.
Another contribution of this paper is an analytical explanation of
this observation. The final contribution of this paper is the pre-
sentatation of an analytical proof that upper bounds the latency
incurred by a subsystem, which employs a shutdown power man-
agement policy. This allows system designers to effectively tradeoff
the savings in power with the increase in the system latency due to
aggressive shutdown power management schemes.

Index Terms—Competitive ratio, embedded systems, latency,
online algorithms, power management algorithms, service times,
system level power.
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I. INTRODUCTION

POWER dissipation in a very large scale integration (VLSI)
system is a primary design consideration. In the design of

portable computing devices, greater attention has to be paid to
power estimation and management techniques. Over the past
few years, methods to estimate and minimize power in the de-
sign of circuits have been reported. Several excellent reviews of
power minimization techniques are presented by Pedram [9],
Devadas and Malik [10], Chandrakasan and Brodersen [14],
Najm [11] and Luca [26].

Low power VLSI design can be achieved at various levels of
abstraction during the design process. These include the system
level, behavioral level, the register transfer level (RTL), and
the gate level. Most techniques in the literature are focused at
minimizing power at the RTL level. This paper focuses on the
problem at the system level.

A. System Model

Our model of the system is a reactive real-time embedded
system that continually reacts to the stimuli coming from its
environment and performs this interaction under timing con-
straints. This interaction causes the system to dissipate power
in order to service the request. The interarrival time between
requests is typically unknown and may not fall into any pat-
tern. The requests typically arrive unpredictably and generally
do not fall into well-known probability distributions [1], [2], [4],
[5]. Therefore, a good power management strategy would selec-
tively turn on and turn off the system to minimize the overall
power consumption based on the arrival of the requests. In par-
ticular, the optimal power dissipation will be by an algorithm
that knows the interarrival times between requests ahead of time.
Further, during system level design, the internals of the system
under consideration are not known. In order to determine an ef-
fective power management strategy for such a system, we as-
sume that at least one power metric of the system is known: the
ratio of the idle and the startup power dissipation. In this paper,
we discuss strategies that selectively shutdown subsystems and
turn them back on when needed.

One side effect of shutting down subsystems and restarting
them when required is an increase in the subsystems’ latency.
When a subsystem is shut down and needs to be restarted, it
incurs some delay overhead before the subsystem is initialized
and is ready to service input requests. Since power management
is needed for subsystems that are timing critical, the effect of
latency arising from the power management scheme is crucial
to the design of a system that complies with its timing require-
ments. This paper analyzes the effects of power management
on the latency of the system. The tradeoff between latency and
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power management is that the more aggressive the power man-
agement strategy, the more often the system is powered down,
which in turn increases the latency of the system. The latency of
the system also effects the power management strategy. When
requests for service are delayed, the intervals of time in which
the system is idle can change, which can effect the relative per-
formance of power management algorithms. In this paper, we
discuss lower bounds on the latency of subsystems in the pres-
ence of power management algorithms.

B. Background and Previous Work

There are essentially two kinds of power management strate-
gies: nonadaptive and adaptive. Typically, power management
creates sleep states with various levels of power savings and
delay overheads which can be externally controlled. Typically,
power management algorithms are carried out based on the
following strategy: go to sleep after the system has been idle
for a period of time. Algorithms that statically compute the
sleep states based on the properties of the system and do not
change when the requests are received are called nonadaptive
algorithms. Adaptive power management algorithms dynam-
ically determine the time after which the system shuts down
as the system is servicing requests. Intuitively, we would
expect adaptive algorithms to perform better than nonadaptive
ones. Using heuristic algorithms, all previous works have
experimentally shown that this intuition holds.

This paper builds upon earlier works on power management
strategies [1], [2], [6], [24]. Srivastavaet al. [6] conducted an
extensive analysis on different system shutdown approaches.
The authors have proposed an adaptive shutdown algorithm for
power saving of event-driven systems. The authors first col-
lected sample traces of on–off activity on an X-server, then they
proposed two adaptive shutdown formulas based on the anal-
ysis of the sample traces: one using a general regression-anal-
ysis technique to correlate the length of the upcoming idle pe-
riod and the second based on on–off activity behavior. These re-
sults demonstratedexperimentallythat adaptive shutdowns can
reduce power dissipation in systems.

This result was followed up by Hwang and Wu [1]. Their
analysis adapted the exponential-average approach [12] used in
the CPU scheduling problem for the prediction of idle periods.
They proposed an algorithm using two new strategies: predic-
tion-miss correlation and prewakeup. The most significant con-
tribution of this work is that these methods were independent
of the traces obtained for the system under consideration. How-
ever, in the absence of analysis of the algorithm, it is not clear
how close their results are to the optimal solution. Further, there
is significant cost associated with a hardware implementation of
their strategy.

More recently, Paleologoet al. [2] proposed adaptive power
management algorithms for embedded systems by modeling
the problem as a stochastic optimization problem. They use a
laptop’s disk drive as an embedded system [27] and using the
Auspex file traces [25] they generate a Markov model using an
exponential distribution as the base distribution. However, their
assumption that the interarrival times between requests is expo-
nentially distributed is hard to justify and may not always hold
in view of significant correlation between accesses. As a result,

their model is only as good as: a) the distribution they assume
the traces to fall into and b) the traces themselves. There has
also been work on modeling the dynamic power management
problem using stochastic methods [15]–[17]. These papers
also assume that the interarrival times between requests are
exponentially distributed which eases the analysis but seldom
occurs in real-life applications. There has also been some work
on experimentally comparing the performance of various power
management algorithms by building a framework for power
management for notebook computers [17].

An important issue when designing power management algo-
rithms is its effect on latency. None of these papers model the
effects of power management on the latency of the system. In [1]
the authors indicate that latency incurred due to the power man-
agement algorithm is a critical design parameter; however, they
do not model it in their analysis. The authors experimentally
determine the latency that is incurred by software systems for
which power management strategies have been defined. How-
ever, their results cannot be generalized and applied to other
systems, especiallly hardware systems where latency is a crit-
ical design parameter. Also, most of the previous work done in
this area does not account for the service time of a request while
modeling the problem.

C. Contributions

One of the problems with existing heuristics is the lack of
indicators on how close these heuristics are to the optimal solu-
tions, whether an optimal solution exists, and an understanding
of why some heuristics perform better than others. Another
problem is that these heuristics are dependent on the input
distributions: they have been generated by examining trace
patterns of several experimental examples. In this paper, we
attempt to develop a framework within which these heuristics
can be analyzed and propose algorithms that are independent
of the input distribution. This framework is based on the notion
of competitive analysis.

Competitive analysishas been used as a technique to analyze
various online problems [18]–[23]. In [7] and [8], the authors
analyze the spin-block problem which is similar to the power
management problem without any latency consideration. The
algorithms and proofs presented in this paper have been adapted
from those works. There are significant changes in the problem
formuation with latency consideration which the authors in [7]
and [8] have not addressed.

On the whole, this paper makes five major contributions.
The first contribution is the introduction of a formal analysis
technique called competitive analysis to the power man-
agement problem. Competitive analysis as applied to power
management does not depend on trace patterns and can be used
to formally analyze the performance of existing heuristics.
For this analysis, we do not model the service times for a
given request, rather, we assume that the requests are serviced
instantaneously. Using this technique, we can prove bounds
on the power dissipation achieved by a power management
algorithm. The second contribution is the presentation of an
optimal nonadaptive online algorithm. The third contribution
is a lower bound for any adaptive online algorithm. We show
that no adaptive online algorithm can dissipate less than about
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1.6 times the power dissipated by the optimal offline algorithm
in the worst case unless it keeps a complete history of all
interarrival times seen so far. We also show that in order for
any online algorithm to achieve this lower bound, it may have
to maintain acompletehistory of the interarrival times of the
requests in the input sequence seen so far. Since this is not
practical, we present a simple algorithm that uses only the last
interarrival time to predict the arrival of the next request. We
show that this algorithm performs as well as the heuristics, but
we can bound its worst case performance and resource usage.
Futher, our analysis shows that in order to design aggressive
power management strategies, system designers will have to
budget greater resources toward the power management.

The fourth contribution of this paper is the observation that
when service times for a request are modeled, a simple algo-
rithm that shuts down the system whenever it encounters an idle
period performs better than the proposed adaptive algorithms in
some cases and especially when the revival time is small. We an-
alytically explain these observations. The final contribution of
this paper is the presentatation of an analytical proof that upper
bounds the latency incurred by a subsystem for which a shut-
down power management policy is devised. We show that this
bound is achieved if the system is shut down even once, thereby
proving that this bound is very realistic and will occur in prac-
tice. We believe that latency is a critical design parameter that
the system designer must account for while designing a system
that has strict timing requirements. The system designer has to
manage latency as well as dissipate as little power as possible.

To test the performance of all the proposed algorithms and
compare their performance against previously proposed heuris-
tics, we use the disk drive [27] of a laptop computer as an em-
bedded system. We compared our algorithms with Hwang and
Wu’s heuristic algorithm [1] which is the most comprehensive
algorithm that does not depend on the input sequence patterns.

II. PROBLEM DEFINITION

Our model of the problem consists of a reactive real-time em-
bedded system that receives service requests online; the requests
are not known in advance and do not necessarily fall into any
well-known distribution pattern. Each service requestcomes
with a service time that is also not known in advance and
could potentially vary from request to request. Requests are han-
dled in a first-come/first-served manner. The system cannot be
idle as long as there are requests waiting in the system. If there
are no requests waiting for the system, the system can be shut
down during this idle period. If there are no requests waiting for
the system and the system is off then when a request arrives, the
system must be turned on immediately in order to service the
newly arrived request. Our goal is to design an effective power
management strategy for the system taking into account system
performance (latency) and resources needed to implement such
a strategy.

In this paper, we only consider a two-state shutdown system:
the system can be in one of two shutdown states, i.e., shut-
down or idling. In [3] we have examined the multistage shut-
down policies and presented algorithms that work under various
state-to-state transitions policies.

The system dissipates units of energy during revival. It
takes the system units of time, called therevival time. During
this time, the system expends energy at a rate of, called the
revival power, to go from the shutoff state to a state where it can
start servicing requests. Let us assume that the average power
dissipated by the system when it is idle is. Let us assume
that . This implies that turning the machine on requires
more power per time unit than leaving the machine in the “on”
state. We denote

is called theshutdown threshold.
Example 1: Consider the IBM disk drive [27] that we model

in our experiments. It has s, watts, and
watts which gives us ashutdown threshold,

s. This implies that after the disk has
been idle for 21.17 s, it is advantageous to shutdown the system.

In our analysis, is an important metric; it is the length of
time such that if the system is idle for time, the energy that is
expended is the same as the energy required to revive the system
from the powered down state. Note that if latency considerations
are ignored, then if a given idle period is less than, the optimal
algorithm will remain powered up for the duration of the idle
period. If the idle period is greater than, the optimal algorithm
will power down at the beginning of the idle period. Of course
an algorithm working with requests as they come in will not
know the length of an idle period when it begins since it will not
know the time of arrival of the next request. Such an algorithm
is called an online algorithm and is explained next.

We say that an algorithm isonline if it operates without
knowledge of the arrival time or service requirements of future
requests. In other words, it does not depend on the complete
data set to make its decisions: decisions are made based on data
that has already arrived and the decision-making process may
be changed as the historical data changes.

Our goal will be to minimize the total power consumption. At
the same time, we would like to guarantee an upper bound on
the latency of any request which enters the system. Further, the
power management strategy should reflect the effects of imple-
mentations in hardware as well as software.

III. COMPETITIVE ANALYSIS

Consider decisions that depend on future events of which the
decision maker has only partial knowledge. As there is no cer-
tain method to determine the future, such decisions are taken
online. A common approach to solve an online problem is to
assume that the future events are distributed according to some,
known or unknown, probability distribution and to devise a deci-
sion mechanism whose expected (average) performance is max-
imized subject to these assumptions. The following are some
examples of online problems: 1) replace algorithms for main-
taining a cache; 2) load balancing in a distributed environment;
and 3) buying and selling stock in the stock market to maximize
gains.

Under the assumption that there is some underlying proba-
bility distribution which governs future events, one might try
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to “learn” these distributions so as to improve the decisions,
as time goes by. This approach assumes that the real-life prob-
lems fall into some distribution that can be learned. An alter-
native approach to solvingonlineproblems, calledcompetitive
analysis, has been considered by computer scientists in recent
years. Sleator and Tarjan [23] introduced the idea in the context
of dynamic data structures. The competitive analysis approach
assumes that the input to the problem is generated by an adver-
sary. The performance of theonline strategy(algorithm), which
has no knowledge of the future events, is compared with that
of anoptimal offline strategy(adversary), which has complete
knowledge of the future and operates optimally based on this in-
formation. Since its introduction, competitive analysis has been
successfully used to analyze online algorithms in various areas
of computer science: scheduling, graph coloring, robot motion
planning, computational finance, matching,-server, and file
access and allocation in distributed systems. In this paper, we
adapt competitive analysis to estimate the power dissipation in
an embedded system.

Consider a fixed sequenceof inputs to an embedded system.
Let denote the minimum power that an offline algo-
rithm (adversary) can dissipate on this sequence and let
denote the power dissipated by an online algorithmon the
same sequence. The algorithmis said to achieve thecompet-
itive ratio , if for all values of inputs

We are interested in finding the algorithmthat minimizes
the competitive ratio. The competitive ratio as a measure for
online algorithms was first introduced in [23]. We assume that
the adversary generates the input sequence to the algorithm,
based only on the description of the problem. Intuitively, for our
application, if an algorithm that measures power dissipation is
said to be -competitive against an oblivious adversary, it means
that in the worst case the algorithm would dissipatetimes as
much power as the optimal offline algorithm.

In order to simplify our analysis for the adaptive algorithms,
first we assume that the requests are serviced instantaneously.
This implies that for request, the service time is zero. In
Section VI, we show that relaxing this assumption causes the
algorithms based on this assumption to perform poorly. We
present a theoretical analysis of these results.

IV. A N OPTIMAL NONADAPTIVE POWER MANAGEMENT

ALGORITHM

In this section, we present a nonadaptive online algorithm
for power management. For nonadaptive algorithms, the service
times for a particular job is of no consequence and is not mod-
eled here. The main strategy is to wait for a particular threshold
of idle time before shutting down the system. We establish a
lower bound on the competitive ratio for any nonadaptive on-
line algorithm, then show that the proposed algorithm achieves
this lower bound thereby proving that our algorithm is optimal.
We note that this problem is identical to the ski-rental problem
discussed in [13] and its solution is typically presented as an in-
troduction to online algorithms and competitive analysis.

Fig. 1. The optimal nonadaptive online algorithm. The algorithms enters the
idle state if it has no request to service during a basic unit of time.

Before we present the algorithm, we must indicate that the
shutdown threshold is usually measured using a base unit of
time . This base unit of time can be as granular as provided by
the system under consideration. As a result, we now define the
number of these base time units that when elapsed provide us the
shutdown thresold. We define theshutdown-threshold estimate
as an integer

Example 2: Consider the IBM disk drive in Example 1. Its
shutdown threshold is 21.176 s. Let us suppose that the finest
granularity of time it can measure is 1s. Hence, its shutdown-
threshold estimate is ticks of a
1- s clock. This means that we now count the number of clock
ticks (during which the system is idle) that expire after which
the system is shutdown. This is typically the case in the design
of most hardware systems.

On the other hand, if the finest granularity the disk could
measure was 1 ms, its shutdown-threshold estimate would be

ticks of a 1-ms clock.
Throughtout the rest of this paper, we will use the shutdown-

threshold estimate as the parameter to examine the performance
of all proposed algorithms.

A. The Algorithm

is the energy dissipated during revival, is the revival
latency, is the revival power, and is the power
dissipated when the system is idle. Using

(1)

(2)

(3)

the shutoff strategy is simple: wait for idle time units and
then shut down the system. If a service request arrives before

time units, the system is not shut down; otherwise it is
shut down after time units. Let us denote this deterministic
online strategy by NONADAPTIVE as shown in Fig. 1. It says,
when the system is in the idle state (variable is
true), it counts the number of idle intervals. When the number
of idle intervals is greater than or equal to, the system shuts
off.

Fig. 2 shows the behavior of the algorithm NONADAPTIVE as
well as the behavior of the optimal offline adversary on a se-
quence of input requests.

B. Analysis of Algorithm

Lemma 1: Algorithm NONADAPTIVE is competitive.
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Fig. 2. The behavior of the algorithm and the optimal adversary on an input sequence. We assume that the first request (job) which arrives at time 0 is serviced
instantaneously. The algorithm waits for four idle periods before it powers the system down, whereas the adversary powers it down immediately. The adversary
powers the system immediately, since the adversary knows when the next request will arrive, in this case at time 8 and there are more than four idle intervals. On
the other hand, when the next request (job) arrives at time 8, it is serviced instantaneously—neither the adversary nor the algorithm power down the system since
the next request arrives at time 10. The adversary can power down immediately when the next request is at leastk (in this case we have chosenk = 4) units away.
The algorithm, on the other hand, has to wait in the idle state until it becomes advantageous to power down. We have assumed here for the sake of simplicity that
the requests (jobs) are serviced instantaneously.

Proof of Lemma 1:Let us assume that time units expire
between two adjacent requests. This information is not known
to algorithm NONADAPTIVE. We merely use it for the analysis.
However, since the adversary controls the sequence of interar-
rival times, is determined by the adversary. If the system is
not shut down ( ), then the offline algorithm and the
online algorithm dissipate the same amount of power since they
both remain idle until the arrival of the next request.

If the system is shut down ( ), then the algorithm
NONADAPTIVE dissipates

energy.
The first term comes from the fact that the system was idle for

( ) time units of length and dissipated units of power
in each time unit. The second term comes from the fact that the
system was shut down and will have to be restarted to service
requests (revival energy).

Now using (3)

If the system is shut down ( ), theoffline adversary
has two choices.

1) The adversary shuts the system down after some
units of time. In this case, might as well be 1 since any
value of will imply that the adversary dissipates
more power than required. Therefore, the adversary shuts
down the system as soon as the first idle period has been
encountered, provided the adversary knows that this idle
period will be greater than time units. Note that the
adversary knows when the next request will arrive and
can therefore make this choice when it is advantageous to
do so. In this case, the adversary dissipates

(4)

units of energy.

2) The adversary does not shut down the system at all. It
remains idle until the arrival of the next request, in which
case it dissipates

(5)

units of energy.
The adversary tries to maximize the competitive ratio; it

maximizes the algorithms power dissipation and minimizes its
power dissipation. The adversary dissipates minimum power
only when the power dissipated by the two choices it has are
equal, which gives us .

Thus, using (4) and (5), algorithm NONADAPTIVE attains com-
petitive ratio

The adversarial strategy depends on the value of, the inter-
arrival time between the two requests. Since the adversary picks
the input sequence, the adversary has control over. The adver-
sary chooses such that it causes the online algorithm to power
down, forcing it to incur the additional power dissipated in pow-
ering up. Hence, the adversary picksto be . This implies that
the adversary picks a sequence where the requests come to the
algorithm as soon as it has powered down forcing it to dissipate
the extra energy in powering up. On this sequence, the adversary
shuts off as soon as an idle sequence is encountered. Therefore,
the adversary picks to be and dissipates units of
energy. This leads us to the lower bound argument presented in
Section IV-C.

The factor 1 is a consequence of the quantization of time
based on the granularity of the clock used to measure time. It is
easy to see that if we assume that time is continuous, the com-
petitive ratio will tend to two since will tend to infinity. Based
on the type of embedded system, hardware or software, we can
make some assumptions about the discreteness of time which
will effect the competitive ratio. We do not consider the increase
in latency of the system whose power we were are trying to
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manage in this analysis; we use the experimental results to reach
our conclusions.

C. Lower Bound Proof

In this section, we will show that algorithm NONADAPTIVE is
optimal. This involves proving a lower bound for the competi-
tive ratio of the problem.

Lemma 2: There exists no nonadaptive deterministic algo-
rithm that can attain a competitive ratio less than .

Proof of Lemma 2:First, notice that any deterministic
strategy for this problem is a “threshold” strategy. A solution
can be completely characterized by specifying a threshold
after which the system shuts down. Let be any arbitrary
deterministic strategy where the “threshold” is. There are
two possible cases for analysis.

1) : attains a competitive ratio of

(6)

2) : attains a competitive ratio of

(7)

(8)

Therefore, from (6) and (8) we see that consumes more
power than algorithm NONADAPTIVE. Since the choice of
was arbitrary, Lemma 2 is proved.

Theorem 1: Algorithm NONADAPTIVE is optimal.
Proof of Theorem 1:Lemmas 2 and 1 prove that under

the assumption that time has been discretized, strategy
NONADAPTIVE is optimal. The same analysis applies under the
assumption that time is continuous but the bound is 2.

D. Effects of Discretizing Time

The term 1 occurs in the competitive ratio since we have
assumed that time is discrete and broken intointervals of
time , each after which we shutdown the system. If we as-
sume that time is continuous, it is easy to see that the algorithm
NONADAPTIVE will be 2-competitive. The discreteness of time
has implementation implications for hardware and software sys-
tems and are addressed in this section.

In hardware systems, the system clock specifies the granu-
larity of time for that system. Let us denote the period of this
clock by . In order to estimate , we will have to wait some
number of clock cycles of period. Depending on whetheris
a multiple of or not, there will be an error in the estimation.
We have used the ceiling operator in our analysis.

Moreover, hardware systems can be shut off afterticks of
the system clock. In software systems, however, there is no guar-
antee that the system (e.g., an X-server) can be shut off after
time units. Software systems get shutoff interrupts whose ar-
rival times could differ based on the load on the systems. As a
result, software systems could potentially dissipate more power

than hardware systems even though they both use the same al-
gorithms.

V. ADAPTIVE POWER MANAGEMENT ALGORITHMS

Adaptive power management algorithms change the length
of the interval after which shutdown occurs dynamically based
on past performance. Such algorithms typically have improved
performance due to their ability to base decisions on the nature
of the data and dynamic system behavior. To begin with, we
assume that each interarrival time is independently chosen from
the same distribution and adaptive algorithms attempt to “learn”
this distribution. Further, we also assume that the service time
for each request is negligible. In Section VI, we relax this as-
sumption and present experimental results that show the effect
of modeling service times on the performance of various algo-
rithms.

We show analytically that the lower bound on the competitive
ratio for adaptive algorithms is better than the competitive ratio
for nonadaptive algorithms. Learning thetrue distribution that
generates the interarrival times would be very memory intensive
since the algorithm would have to keep track of a significant
part of the history of the sequence. Since this is not practical,
we present an algorithm that uses the last input sequence to pre-
dict the next event. We also show that this algorithm is 3-com-
petitive against an all knowing adversary. The analysis in this
section builds upon the work of Karlinet al.[8] and specifically
their formulation of the spin block problem [7]. We augment
their theoretical work with experimental results. However, the
authors in [7] and [8] do not model service times in their anal-
ysis.

A. Lower Bound for any Adaptive Algorithm

In the case of adaptive algorithms, assume that each interar-
rival time is independently chosen from some distribution, say

. Then, technically it is just a matter of “learning” this dis-
tribution and being able to pick the shutdown time using the
estimator distribution. This implies that there are two subprob-
lems to solve.

• Learn thetrue distribution from which the interarrival
times are being generated.

• Pick a shutdown time, say.
Let us begin by assuming that has been learned by the

algorithm. In order to distinguish between thetrue distribution
and the learned distribution, we denote the learned distribution
by . We also assume that time is continuous for the purpose
of analysis.

Let denote an arbitrary interarrival time generated from
. Now, let algorithm shut down the system afterunits

of time in interval .
Theorem 2: No adaptive algorithm can achieve a competitive

ratio better than .
Proof of Theorem 2:We prove the lower bound by

showing that algorithm can be no better than -com-
petitive. Let be a real number such that . Recall
that this is the same definition we have forin Section II. If
we assume that is the energy dissipated by algorithm
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when it encounters , then the expected energy dissipated
by is

(9)
The first term within the integral is the energy dissipated

when the interarrival time is less than the shutdown threshold
picked by algorithm . The second term is the energy dis-

sipated when the interarrival time is greater than the shutdown
threshold. In this case the system gets shutdown: the system dis-
sipates before shutdown and energy for revival.

Therefore

(10)

(11)

Algorithm has to choose values forbased on such
that the expected energy dissipated is minimized. The optimal
offline algorithm (adversary) has

In other words

The adversary picks the distribution in order to max-
imize the competitive ratio and the expected energy dissipated
by the algorithm. The algorithm picks to minimize the com-
petitive ratio.

Solving the differential equations obtained by differentiating
twice with respect to , we obtain

otherwise.

By setting , the algorithm yields a competitive
ratio of

(12)

Since the choice of was arbitrary, the analysis applies to
any interval in the request sequence. This shows that there is
no algorithm that can achieve a competitive ratio better than

.
In this solution, we have given the algorithm the advantage

of estimating exactly. However, if this is not the case, the

Fig. 3. The 3-competitive nonadaptive algorithm for power management.

algorithm will not be able to attain the bound proved here. To
estimate accurately, the optimal algorithm may have to
maintain accurate statistics by keeping track of the history of
the interarrival times of requests. A practical alternative to this
algorithm is to keep track of the last few interarrival times in
order to determine what to do the next time after a request has
been serviced. Interestingly, a different version of this algorithm
is presented by Hwang and Wu [1]. The authors arrive at their
algorithm by examining trace patterns.

B. A 3-Competitive Adaptive Algorithm

Fig. 3 outlines the algorithm. is computed dynamically and
determines when the system will be shutdown.

We will now show that this algorithm is 3-competitive. There
are two cases to consider: a) : This case is identical to
the deterministic case and we have shown that this approach
achieves a competitive ratio of 2. b) : In this case, the
previous interarrival time was greater thanand as a result in
the previous interval, the adversary dissipated at least
energy, whereas we dissipated (to revive the system), since
we shut down the system as soon as it was idle. Hence, we can
add the power dissipated in this interval to the power dissipated
by the adversary in the previous interval thereby amortizing the
power dissipated in this interval with the power dissipated in the
previous interval. This yields an overall competitive ratio of 3.

This algorithm is similar to the one presented by Hwang and
Wu [1]. Their algorithm is used for software systems and com-
putes as the cumulative weighted average of the previous in-
terarrival times. This computation uses significant hardware re-
sources. Therefore, this strategy is not suitable for implemen-
tation into hardware. Since they use a larger history of interar-
rival times to compute their shutdown threshold, their algorithm
will be more competitive than ADAPT, but only marginally so.
The 3-competitive algorithm, ADAPT is simple and can be used
in both in hardware and software systems. Also, the analysis al-
lows system designers to identify power critical subsystems and
incorporate aggressive power management techniques for these
systems by committing to more resources upfront in the system
design process.

VI. M ODELING SERVICE TIMES

Adaptive power management algorithms change the length of
the threshold after which shutdown occurs dynamically based
on past performance. Such algorithms typically have improved
performance due to their ability to base decisions on the nature
of the data and dynamic system behavior. Some power man-
agement algorithms have assumed that each idle period can be
considered to be a random variable and the length of each idle
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period is independently and identically distributed. These algo-
rithms attempt to learn the distribution of idle periods as time
progresses and optimize the threshold based on the estimate of
this distribution [7], [8]. We have also presented such an adap-
tive algorithm in this paper.

Other algorithms have assumed that there is significant cor-
relation between the length of recent idle periods and the length
of idle periods in the near future. These strategies use recent idle
periods to predict whether the upcoming idle period is likely to
be more or less than the parameterderived in Section II. Re-
call that is the length of time such that if the system is idle for
time , the energy that is expended is the same as the energy re-
quired to revive the system from the powered down state. If an
online algorithm knew whether the upcoming idle period was
going to be shorter or longer than, it could perform optimally.
If the interval is less than, it will stay powered up, otherwise
power down at the beginning of the idle period. Thus, given an
estimate of the length of the upcoming idle period, if the esti-
mate is less than, stay powered up; if it is greater thanthen
power down immediately. If, however, the algorithm chooses to
stay powered up and finds that the idle period has lasted time,
the algorithm then powers down. This latter step is important in
case the idle period is extremely long. These adaptive schemes
are very effective if the arrivals are very bursty, a property which
characterizes many request arrival sequences. That is, the pre-
dictions are accurate if short idle periods tend to be followed by
short idle periods and long idle periods tend to be followed by
long idle periods.

The ADAPT algorithm shown in Fig. 3, uses the length of the
last idle period to predict the length of the next idle period. The
algorithm presented by Huang and Wu [1] predicts the length
of the next idle period by an exponentially weighted average of
the lengths of the previous idle periods. None of the previous
studies incorporates service time or power-up latency into their
models. That is, they assume that these values are zero.

Interarrival time is defined as the time between two consecu-
tive arrivals in a sequence. We denote interarrival time between
requests and as . Interservice time is de-
fined as the time between the end of one request and the arrival
of the beginning of the next request. The adaptive algorithms
described here were all introduced in the context where all ser-
vice times and power-up times are assumed to be zero. In this
case, the length of the last idle period is the same as the last
interservice time which is also the same as the last interarrival
time. Thus, it is not obvious which value to use with the adap-
tive schemes when introducing timing considerations into the
model. Although we experimented with all three values, the re-
sults we present here use interservice time since that value seems
to capitalize the most on correlations in the arrival sequence.

VII. EXPERIMENTAL RESULTS

We use the disk drive [27] in a laptop as an embedded system.
We have obtained traces for the use of an Auspex File Server
[25] from Berkeley’s NOW project and apply these traces as
stimuli to the laptop’s disk drive. This drive and the traces were
also used in the experiments performed by [2]. The data is all
the requests that were made to an Auspex file server maintained

by the University of California at Berkeley. We sieved the data
so that we look at requests made by a single user to the file
server. The original data was a union of requests obtained from
all users that accessed data from the file server over a period of
7 days, 24 hours a day. In this paper, we picked one day from
these 7 days at random—this was day number 6. It so happens
that there were 12 hosts that made requests to the Auspex server
on that day and so we have 12 different traces. Trace t6.H1064
represents the requests made by host 1064 to the Auspex server
on day number 6. We believe that the data obtained from the
NOW project is representative of a typical sequence of requests
that the user of a laptop would generate which includes read,
write, and update requests.

The disk drive has the following power characteristics. Its in-
ternal clock operates at 10 microseconds. The average power
dissipated in servicing any request is denoted by
watts. The revival power dissipated is watts. The re-
vival latency is s. Using these parameters, we modeled
and simulated the following scenarios to compute the power dis-
sipated.

1) Algorithm Optimal: This algorithm is assumed to know the
sequence of arrival of requests and their service time,all in
advance. As a result, it can make decisions based on knowl-
edge of the future. The algorithm will shut down the system
immediately if the next idle period is greater thantime
units. An oracle will keep the system idle if the idle period is
less than time units. Any proposed algorithm tries to com-
pete with this oracle strategy. This oracle is also referred to
as the optimal adversary since every algorithm is trying to
achieve the results obtained by an algorithm that has knowl-
edge of the future.

2) Algorithm IMMEDIATE: This algorithm shuts down the
system whenever it sees an idle period, however small, and
incurs the overhead cost of revival.

3) Algorithm Adapt: This algorithm uses the previous interser-
vice time, , to predict the next idle period. If this value is
greater than it shuts down immediately assuming that the
next idle time will be greater than time units. If is less
than , it keeps the system idle for a period ofunless a
new request arrives.

4) Algorithm HwangWu: This algorithm is an adaptation of
Hwang and Wu’s algorithm[1]. It uses a cumulative average

of the interservice times to predict the next idle period. If
is greater than , it shuts the system off as soon as an idle

period is seen, otherwise it keeps the system idle fortime
units before shutting down the system.

A. Discussion

Figs. 4 and 5 show the performance of the four power man-
agement algorithms in terms of power efficiency and latency.
The latency of the system as a result of power management does
not increase any more than 4 s, which is the analytical upper
bound on the increase in system latency. Algorithm OPTIMAL

is the optimal performance one can expect from any algorithm
since OPTIMAL has complete knowledge of the future and hence
makes optimal decisions. We note that IMMEDIATE outperforms
the other algorithms in terms of power dissipation on two
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Fig. 4. Power dissipation in watts of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the power dissipated when that
particular power management algorithm is used for the disk drive. Immediate’s power dissipation for trace 4 and trace 9 is less than ADAPT.

Fig. 5. Increase in latency (in seconds) of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the increase in latency when
that particular power management algorithm is used for the disk drive.

traces. However, its effect on latency is worse than OPTIMAL

and ADAPT. Further, we hypothesized that the peformance of
IMMEDIATE would get better as decreased. In order to test

this hypothesis, we ran all the experiements varyingfrom 4
s, to 0.4 s and 4 ms. The results of our experiments are shown in
Table V and they validate our hypothesis.It is not unreasonable
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Fig. 6. Number of shutdowns of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the number of shutdowns when that
particular power management algorithm is used for the disk drive.

for us to assume that can assume these smaller values
since the IBM disk [27] has these as the revival times for some
intermediate low power idle states. The penalty of being in
these low power idle states is that the power dissipated in these
states is not zero, rather less than the power dissipated in the
idle state.

There are two primary reasons for the success of IMMEDIATE

over the other adaptive algorithms on the two traces. The first is
that the patterns in the request arrival sequence which the adap-
tive algorithms were exploiting are no longer present when ser-
vice time and power-up time are incorporated into the model.
Fig. 7 shows the the sequences that ADAPT tries to exploit to re-
duce power and the behavior of IMMEDIATE on these sequences.
Secondly, Fig. 6 shows the number of shutdowns for each of
the four algorithms. Although ADAPT is making fewer mistakes
than IMMEDIATE in predicting whether the upcoming idle pe-
riod is greater than or smaller than, the mistakes made by
ADAPT are on average more costly than the mistakes made by
IMMEDIATE and these mistakes are more expensive asde-
creases. We discuss these two issues in more detail below.

In bursty arrival patterns, there is a sequence of very short
interarrival times followed by a sequence of longer interarrival
times. However, we found that when the service times and
power-up times are incorporated into the model, many of
the shorter interarrival times do not translate into idle times,
because during bursts, requests get queued up in the system and
executed one right after the other. The queue finally empties
out when the burst is over and there is a longer interarrival time.
This tends to result in less correlation between the previous
service time (or previous idle time) and the next idle time.

In order to test this hypothesis, we ran ADAPT and IMMEDIATE

on the same data, except that we artificially set service time and
power-up time to be zero. The results are shown in Table III. Al-
gorithm ADAPT does better on all traces. The reason that ADAPT

is not doing better on the two traces when service times are mod-
eled is explained below.

Table I shows the number of “mistakes” made by ADAPT on
all the traces. That is, it shows the number of times ADAPT pre-
dicted that the next idle period would last less than timewhen
it actually lasted longer. In addition, it shows the number of
times ADAPT predicted the next idle period would last longer
than time , but it actually lasted less time. Similar results for
IMMEDIATE are shown in Table II. IMMEDIATE has only a one-
sided error: by shutting down immediately, it is always in effect
predicting that the idle period will be longer than. The average
wasted energy for each mistake is also given. This is the extra
amount of energy expended because the algorithm predicted in-
correctly. Note that the most costly kind of mistake is when the
algorithm predicts that the idle period will be short when it is in
fact long. Since only ADAPT makes this kind of error, it is paying
a much higher price for each mistake even though it is making
fewer mistakes.

Suppose an algorithm stays powered up (thinking the idle pe-
riod will be short) and then powers down when the idle period
has lasted time units. Its cost is . If the algo-
rithm had powered down, it would have expended onlyunits
of energy. Thus, the wasted energy is. On the other hand, if
it powers down immediately and the length of the idle period is

, then the algorithm spends but could have
only spent . The extra energy expended is which is
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Fig. 7. ADAPT makes guesses about the next interarrival times. Its guess is either correct or wrong. In this figure, we show the power dissipated by ADAPT when
it guesses correctly as well as when it guesses incorrectly. We also compare the power dissipated by IMMEDIATE on the decisions made by ADAPT. In this figure,
ADAPT tries to exploit the sequences where it guesses that the interarrival times are short. On the other hand, it dissipates a large amount of power when thisguess
is incorrect. As we show, when we begin modeling service times, in some sequences short interarrival times are replaced with longer interarrival times. This causes
ADAPT to perform poorly as compared with IMMEDIATE on some sequences and especially whenk is small.

TABLE I
STATISTICS THAT SHOW THE NUMBER OF TIMES ADAPT PREDICTED THENEXT IDLE INTERVAL TO BE GREATER THAN k AND LESSTHAN k. THE TABLE SHOWS

THE NUMBER OF TIMES ADAPT WAS WRONG IN BOTH CASES AND THEENERGY DISSIPATEDDUE TO THESEWRONGDECISIONS. THE LAST COLUMN DISPLAYS

THE AVERAGE POWER DISSIPATED PERWRONG DECISIONMADE BY ADAPT. IN THIS CASE, T (REVIVAL TIME) IS ASSUMED TOBE 4 s

typically only a fraction of . This explains why the first kind
of error is more costly than the second kind of error.

In Section V, we present a detailed theoretical analysis of this
phenomenon under the assumption that the length of each idle
period is generated independently by identical distributions. We
have also discussed the details relevant to power management in
an earlier section. Let be the random variable which denotes
the length of the idle time. Let be the probability that

. For simplicity, we will assume that time is discretized.
Then, if the algorithm’s threshold is, its expected amount of
energy dissipated is

If the distribution is known, then the optimal online algorithm
will use the equation above and chooseto minimize the ex-
pected cost.

In order to understand why IMMEDIATE performed as well
as it did, we determined the distribution based on the statistics
for the idle periods of each sequence and then determined the
optimal for each sequence. The results are given in Table IV.
Each threshold is expressed as a fraction of the time interval.
What is noticeable here is that in all but a very few cases, the
optimal threshold is small which indicates that IMMEDIATE is
using close to the optimal threshold (traces 4 and 9). Thus, if
we are restricting our attention to algorithms which use a fixed
threshold, then for the data used in our study, a threshold of zero
is closer to the optimal. Further, as decreases, the optimal
threshold decreases as well, which means that IMMEDIATE is
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TABLE II
STATISTICS THAT SHOW THE NUMBER OF TIMES IMMEDIATE PREDICTED THE

NEXT IDLE INTERVAL TO BE GREATER THAN k. THE TABLE SHOWS THE

NUMBER OF TIMES THE DISK WAS SHUTDOWN AND THE NUMBER OF

TIMES THIS DECISION WAS WRONG. THE TABLE ALSO SHOWS THE

POWER DISSIPATED DUE TO THE WRONG DECISION. IN THIS CASE, T
(REVIVAL TIME) IS ASSUMED TOBE 4 s

TABLE III
STATISTICS THAT SHOW THE POWER DISSIPATED BY ADAPT AND IMMEDIATE

WHEN SERVICE TIME AND LATENCY ARE NOT MODELED, I.E., THEY ARE

CONSIDERED TOBE ZERO. WE ASSUMETHAT T (REVIVAL TIME) IS 4 s

using close to the optimal threshold and hence performs better
than ADAPT.

Clearly, it is not always the case that IMMEDIATE outperforms
ADAPT since that will depend on the parameterrelative to
the input sequence. However, we have demonstrated that timing
considerations can be important and should be incorporated into
any model used to assess power management schemes. We have
also demonstrated the effect of system parameters on the power
management schemes. In order to demonstrate the effects of the
parameter on the performance of the algorithms, we varied
the revival times from 4 s to 0.4 s and to 4 ms and computed the
power dissipated by the various algorithms. This result is shown
in Fig. 5. We see that the performance of algorithm IMMEDIATE

becomes better as decreases (increases). In general, a suc-
cessful power management scheme will depend on typical ar-
rival patterns, service times, as well as system parameters.

VIII. E FFECT OFPOWERMANAGEMENT ON LATENCY

In this section, we present a proof that bounds the maximum
wait time for any request that enters the system. This gives us

TABLE IV
BEST SHUTDOWN THRESHOLDCOMPUTEDFROM ALL POSSIBLETHRESHOLDS

AVAILABLE FOR A PARTICULAR TRACE. THE THIRD COLUMN SHOWS THIS

THRESHOLD AS AFRACTION OFk. THE LAST COLUMN PRESENTS THEPOWER

DISSIPATED IFTHIS THRESHOLDWEREUSEDINSTEAD OFk AS THE SHUTDOWN

THRESHOLD. IN THIS CASE, WE ASSUMETHAT T (REVIVAL TIME) IS 4 s

an upper bound on the latency of the system in the presence
of a power management scheme for the system. Such an upper
bound allows the system designer to account for latencies in
the system that arise due to power management strategies for
specific timing critical subsystems.

A. Bound the Maximum Wait Time

Let be any sequence of arrivals ofrequests into the system
ordered according to arrival time. Since the service of these re-
quests is on a first-come-first-served basis, we number the re-
quests from 1 to . Let be the arrival time of request. Let
denote the service time for request. If the system is kept pow-
ered up the entire time, then the latency of each request is min-
imized. Suppose the following algorithm is adopted. Consider
the arrival of request at time . If the system is idle at time

, then request is begun immediately and incurs no latency.
Alternatively, suppose that the system is busy when request
arrives and suppose that the last idle time ended with the arrival
of request . Then the system will be free to begin requestat
time . The system starts requestat time and
must complete requeststhrough before starting request
. This means that the latency of requestdenoted by

is

(13)

Note that for any such that

(14)

Thus, the wait time of requestis

(15)

We call this theinherent wait timeof request since it is
the smallest possible wait time achievable for jobby any
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TABLE V
PERFORMANCE OF THETHREEALGORITHMS ASk IS VARIED. THE VARIATION OF k IS DONE BY DECREASINGT , THE REVIVAL TIME FROM 4 s DOWN TO 4 MS

IN INTERVALS OF 0.1 s. THE PARAMETER k CAN BE REDUCED BY DECREASINGE AS WELL, BUT WE HAVE KEPT THAT FIXED IN THIS CASE. THIS TABLE

SHOWS THECASESWHEN THE ALGORITHM IMMEDIATE PERFORMSBETTERTHAN ALGORITHM ADAPT. THESECASESARE MOREPROMINENT WHEN k IS SMALL

AND ARE INDICATED BY THE BOLD TYPEFACE. NOTICE THAT WHEN k = 1800, THE ALGORITHM IMMEDIATE COMPLETELY OUTPERFORMSADAPT. THIS TABLE

SHOWS THAT THE PERFORMANCE OF THEALGORITHMS CAN VARY DEPENDING ON THEVALUE OF k: SIMPLE ALGORITHMS CAN OUTPERFORMCOMPLICATED

ALGORITHMS. AS A RESULT k NOW BECOMES ANIMPORTANT PARAMETER IN THE DESIGN OF THESYSTEM SINCE IT INFLUENCES THEPERFORMANCE OF

SHUTDOWN ALGORITHMS WHEN THEY ARE USED TOMANAGE POWER DISSIPATION

power management scheme. The maximum inherent wait time
incurred by any request in will be called the inherent wait
time of sequence and will be denoted by .

Part of the problem definition states that any algorithm must
keep the machine on as long as there are requests to service.
Therefore, we consider only the algorithms that consider pow-
ering down the system only during an idle period.

Lemma 3: The wait time of any power management algo-
rithm on any sequenceis at most . is called the
revival time for the system.

Proof of Lemma 3:Fix an arbitrary algorithm . Consider
request in . Suppose that when arrives, the previous idle
period ended with the arrival of request. If the algorithm
did not power down during this period, then the amount of time

that request waits is just

(16)

If the algorithm did power down during this time period,
then the amount of time that requestwaits is

(17)

Since this is true for every request, it follows that no request
waits longer than .
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Next we prove that under a worst case analysis, an algorithm
can always beforced to have a request which must wait an ad-
ditional time as shown in the following lemma.

Lemma 4: Let be any deterministic power management al-
gorithm whose energy dissipation is some finite though variable
value. Given a sequencewith an inherent wait time , when

is used on , there is a sequence whose inherent wait time
is for which has a request which is delayed by .

Proof of Lemma 4:Pick an arbitrary algorithm . Suppose
that after a period of time, the algorithm will shut down the
system if no requests have arrived. (cannot be infinite since
the energy dissipation is finite). Pick any sequencesuch that

. Let be a request such that . Sup-
pose that under the algorithm which nevers turns the system off
the idle period previous to’s arrival ends with the arrival of
request . Make a new sequence of requests. The
arrival time of request in the new sequence is denoted by
and will be from the old sequence. The du-
ration of request in the new sequence is denoted byand is

from the old sequence. Since the algorithmpowers
down after time , the delay of request in will be

(18)

(19)

(20)

Thus we have constructed a new sequence, from an ex-
isting sequence, such that has an inherent wait time of
and at least one request inwill be delayed by .

Theorem 3: In the presence of a power management algo-
rithm , that shuts down a system when it is idle and revives it
when needed for service, no request in any arrival sequence
will be delayed by more than time units. is the time
it takes to revive the system from a shutoff state to a state where
it can service the request and is the inherent wait time of
on .

Proof of Theorem 3:Lemmas 3 and 4 prove this theorem.

IX. CONCLUSION

We have used competitive analysis to analyze previous
“heuristic” algorithms for power management of embedded
systems. We present a simple nonadaptive algorithm that is
2-competitive and optimal. We have proved that the lower
bound on the competitive ratio for any adaptive online algo-
rithm attempting to solve the power management problem is
1.582. We concluded that the simple 3-competitive adaptive
algorithm can be used in both hardware and software systems
and its results are guaranteed. The analysis of adaptive algo-
rithms demonstrates that designers have to commit greater
resources to power critical subsystems so that aggressive power
management algorithms can be used for them.

In this paper, we have presented an upper bound on the in-
crease in latency of the system in the presence of a power man-
agement algorithm. This upper bound allows a system designer
to get a handle on the worst case increase in latency he may
encounter when determining a power management system for
timing critical subsystems. Since this latency is a function of
the revival time, the system designers can make design deci-
sions that can shorten the revival time for subsystems for which
aggressive power management may be required.

We have also presented a performance comparison between
two algorithms, ADAPT and IMMEDIATE, on a set of trace data
[25] applied to the disk of a hard drive [27]. Our experimental
results show that if service times of arriving requests are mod-
eled, the relative performance of algorithms can change. This
change is even more prominent when the revival time changes
as well. We show that the simple algorithm that shuts down the
system whenever it encounters an idle period surprisingly per-
forms better than adaptive algorithms suggested in the litera-
ture on the data used here, especially whenis small. We pro-
vide an analytical explanation for this empirical result. How-
ever, IMMEDIATE’s better performance comes at the cost of in-
creased system latency. This paper demonstrates the power–la-
tency tradeoff and provides insight into the effects of modeling
service time on the power dissipation algorithm.

Note that it is not always the case that timing considera-
tions will have such an important impact on the performance
of power management strategies. This will depend on the distri-
bution of interarrival times of requests as well as service times.
In addition, IMMEDIATE outperforms ADAPT as the parameter

decreases relative to the input sequence. However, we have
demonstrated that timing considerations can be important and
should be incorporated into any model used to assess power
management schemes. We have also demonstrated the effect of
system parameters on the power management schemes. In gen-
eral, a successful power management scheme will depend on
typical arrival patterns, service times, as well as system param-
eters.

This paper leaves many open questions as well, for instance,
the conditions where adaptive strategies are likely to be benefi-
cial. We plan to explore shutdown strategies in other embedded
applications, including real-time operating systems (at the task
level), web servers, networked embedded systems, etc.
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