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An Analysis of System Level Power Management
Algorithms and Their Effects on Latency

Dinesh Ramanathan, Sandra Irani, and Rajesh K. Gupta

Abstract—The problem of power management for an embedded I. INTRODUCTION
system is to reduce system level power dissipation by shutting off D . .
parts of the system when they are not being used and turning them OWER dissipation in a very large scale integration (VLSI)
back on when requests have to be serviced. Algorithms for this system is a primary design consideration. In the design of

problem are online in nature; the algorithm must operate only with  portable computing devices, greater attention has to be paid to
access to data that it has seen so far and without access to the CoMpower estimation and management techniques. Over the past
plete data set or its characteristics. In this paper, we present on- few years, methods to estimate and minimize power in the de-

line algorithms to manage power for embedded systems and dis- " NS .
cuss their effects on system latency. sign of circuits have been reported. Several excellent reviews of

We introduce competitive analysis as a formal framework for power minimization techniques are presented by Pedram [9],
the evaluation of various power management algorithms. Compet- Devadas and Malik [10], Chandrakasan and Brodersen [14],
itive analysis does not depend on the distribution of interarrival Najm [11] and Luca [26].

times of requests. In this context, we present a nonadaptive on- : : :
line algorithm, analyze its behavior, and show that it is optimal. In Low power VLS| design can be achieved at various levels of

this paper, we also present a lower bound on the competitiveness""bStraC'[ion dyring the design process. These include the system
of any adaptive algorithm. We show that no adaptive online algo- level, behavioral level, the register transfer level (RTL), and
rithm can dissipate less than about 1.6 times the power dissipated the gate level. Most techniques in the literature are focused at

by the optimal offline algorithm in the worst case. We also show mjinimizing power at the RTL level. This paper focuses on the
that in order for any online algorithm to achieve this lower bound, problem at the system level.

it may have to maintain a complete history of the interarrival times

of the requests in the input sequence. Since this is not practical, we

present a simple algorithm that uses only the last interarrival time A. System Model

to predict the arrival of the next request. We show that this algo- Our model of the system is a reactive real-time embedded

rithm performs as well as previously proposed heuristics for the - gy gtem that continually reacts to the stimuli coming from its

problem; however, we can bound its worst case performance. In . . . .

all our formal analysis, we do not model the service time for a re- enwlronmen_t gnd performs this interaction under tlmlng Sy

quest, i.e., we assume that requests are services instantaneously. Straints. This interaction causes the system to dissipate power
To test the performance of all the proposed algorithms and com- in order to service the request. The interarrival time between

pare their performance against previously propose heuristics, we requests is typically unknown and may not fall into any pat-

use the disk drive of a laptop computer as an embedded system. In yoy The requests typically arrive unpredictably and generally
our experiments, we model service times, i.e., we assume that the

time to service requests is proportional to the size of the request. donotfall into well-known probability distributions [1], [2], [4],

Under these conditions, we observed that in some cases a simpled]. Therefore, a good power management strategy would selec-
algorithm that shuts down the system whenever it encounters an tively turn on and turn off the system to minimize the overall

idle period performs better than the proposed adaptive algorithms.  power consumption based on the arrival of the requests. In par-
Another contribution of this paper is an analytical explanation of ticular, the optimal power dissipation will be by an algorithm

this observation. The final contribution of this paper is the pre- . : : .
sentatation of an analytical proof that upper bounds the latency that knows the interarrival times between requests ahead of time.

incurred by a subsystem, which employs a shutdown power man- Further, dU'_’ing system level design, the internals of th_e system
agement policy. This allows system designers to effectively tradeoff under consideration are not known. In order to determine an ef-
the savings in power with the increase in the system latency due to fective power management strategy for such a system, we as-
aggressive shutdown power management schemes. sume that at least one power metric of the system is known: the
Index Terms—Competitive ratio, embedded systems, latency, ratio of the idle and the startup power dissipation. In this paper,
online algorithms, power management algorithms, service times, we discuss strategies that selectively shutdown subsystems and
system level power. turn them back on when needed.
One side effect of shutting down subsystems and restarting
, _ _ them when required is an increase in the subsystems’ latency.
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power management is that the more aggressive the power miéueir model is only as good as: a) the distribution they assume
agement strategy, the more often the system is powered dothe, traces to fall into and b) the traces themselves. There has
which in turn increases the latency of the system. The latencyad§o been work on modeling the dynamic power management
the system also effects the power management strategy. Whesblem using stochastic methods [15]-[17]. These papers
requests for service are delayed, the intervals of time in whielso assume that the interarrival times between requests are
the system is idle can change, which can effect the relative pexponentially distributed which eases the analysis but seldom
formance of power management algorithms. In this paper, wecurs in real-life applications. There has also been some work
discuss lower bounds on the latency of subsystems in the pres-experimentally comparing the performance of various power

ence of power management algorithms. management algorithms by building a framework for power
_ management for notebook computers [17].
B. Background and Previous Work An important issue when designing power management algo-

There are essentially two kinds of power management straféhms is its effect on latency. None of these papers model the
gies: nonadaptive and adaptive. Typically, power managemé&iffects of power management on the latency of the system. In[1]
creates sleep states with various levels of power savings dAé authors indicate that latency incurred due to the power man-
delay overheads which can be externally controlled. Typicallggement algorithm is a critical design parameter; however, they
power management a|gorithms are carried out based on (,Kénot model it in their analysis. The authors experimentally
following strategy: go to sleep after the system has been idflgtermine the latency that is incurred by software systems for
for a period of time. Algorithms that statically compute th&hich power management strategies have been defined. How-
sleep states based on the properties of the system and do&yéf. their results cannot be generalized and applied to other
change when the requests are received are called nonadaf¥gems, especiallly hardware systems where latency is a crit-
algorithms. Adaptive power management algorithms dynargal design parameter. Also, most of the previous work done in
ically determine the time after which the system shuts dowhis area does not account for the service time of a request while
as the system is servicing requests. Intuitively, we woul@odeling the problem.
expect adaptive algorithms to perform better than nonadaptive L
ones. Using heuristic algorithms, all previous works hae Contributions
experimentally shown that this intuition holds. One of the problems with existing heuristics is the lack of

This paper builds upon earlier works on power managementlicators on how close these heuristics are to the optimal solu-
strategies [1], [2], [6], [24]. Srivastawet al. [6] conducted an tions, whether an optimal solution exists, and an understanding
extensive analysis on different system shutdown approacheswhy some heuristics perform better than others. Another
The authors have proposed an adaptive shutdown algorithm fiooblem is that these heuristics are dependent on the input
power saving of event-driven systems. The authors first calistributions: they have been generated by examining trace
lected sample traces of on—off activity on an X-server, then thpatterns of several experimental examples. In this paper, we
proposed two adaptive shutdown formulas based on the arattempt to develop a framework within which these heuristics
ysis of the sample traces: one using a general regression-anaft be analyzed and propose algorithms that are independent
ysis technique to correlate the length of the upcoming idle pefthe input distribution. This framework is based on the notion
riod and the second based on on—off activity behavior. These of-competitive analysis
sults demonstrategixperimentallythat adaptive shutdowns can Competitive analysias been used as a technique to analyze
reduce power dissipation in systems. various online problems [18]-[23]. In [7] and [8], the authors

This result was followed up by Hwang and Wu [1]. Theianalyze the spin-block problem which is similar to the power
analysis adapted the exponential-average approach [12] usechamagement problem without any latency consideration. The
the CPU scheduling problem for the prediction of idle periodalgorithms and proofs presented in this paper have been adapted
They proposed an algorithm using two new strategies: predfoem those works. There are significant changes in the problem
tion-miss correlation and prewakeup. The most significant coformuation with latency consideration which the authors in [7]
tribution of this work is that these methods were independeamd [8] have not addressed.
of the traces obtained for the system under consideration. HowOn the whole, this paper makes five major contributions.
ever, in the absence of analysis of the algorithm, it is not cle@he first contribution is the introduction of a formal analysis
how close their results are to the optimal solution. Further, thelechnique called competitive analysis to the power man-
is significant cost associated with a hardware implementationajement problem. Competitive analysis as applied to power
their strategy. management does not depend on trace patterns and can be used

More recently, Paleologet al.[2] proposed adaptive powerto formally analyze the performance of existing heuristics.
management algorithms for embedded systems by modelifgr this analysis, we do not model the service times for a
the problem as a stochastic optimization problem. They us@igen request, rather, we assume that the requests are serviced
laptop’s disk drive as an embedded system [27] and using thstantaneously. Using this technique, we can prove bounds
Auspex file traces [25] they generate a Markov model using @m the power dissipation achieved by a power management
exponential distribution as the base distribution. However, theilgorithm. The second contribution is the presentation of an
assumption that the interarrival times between requests is expptimal nonadaptive online algorithm. The third contribution
nentially distributed is hard to justify and may not always holé a lower bound for any adaptive online algorithm. We show
in view of significant correlation between accesses. As a resuliat no adaptive online algorithm can dissipate less than about
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1.6 times the power dissipated by the optimal offline algorithm The system dissipates,. units of energy during revival. It
in the worst case unless it keeps a complete history of #dlkes the systeff. units of time, called thesvival time During
interarrival times seen so far. We also show that in order fdris time, the system expends energy at a rat.otalled the
any online algorithm to achieve this lower bound, it may hawevival power to go from the shutoff state to a state where it can
to maintain acompletehistory of the interarrival times of the start servicing requests. Let us assume that the average power
requests in the input sequence seen so far. Since this is dissipated by the system when it is idlef%. Let us assume
practical, we present a simple algorithm that uses only the l#éisatP. > F,. This implies that turning the machine on requires
interarrival time to predict the arrival of the next request. Wimore power per time unit than leaving the machine in the “on”
show that this algorithm performs as well as the heuristics, tatate. We denote
we can bound its worst case performance and resource usage.
Futher, our analysis shows that in order to design aggressive t = E
power management strategies, system designers will have to b
budget greater resources towgrd the power managemgnt. ¢ is called theshutdown threshold

The four.th cqntrlbutlon of this paper is the opservatlon tha Example 1: Consider the IBM disk drive [27] that we model
when service times for a request are modekedimple algo- in our experiments. It hag., = 4 s, P. = 4.5 watts, and

rithm that shuts down the system whenever it encounters an igle _ 0.85 watts which gives us ahutdown thresholdt, =

period performs better than the proposed adaptive algorithm @4.5)/0.85 — 21.17 s. This implies that after the disk has

SOme cases an_d especially when.the reV|vaI.t|me IS S’T‘a”-.We Ben idle for 21.17 s, itis advantageous to shutdown the system.
alytically explain these observations. The final contribution o In our analysisty is an important metric; it is the length of

this paper is the presentatation of an analytical proof that UPREKe such that if the system is idle for timg, the energy that is

bounds the latency incurred b.y a subsystem for which a Sh@&’pended is the same as the energy required to revive the system
down power management policy is devised. We show that t

bound i hieved if th rem is shut d th dm the powered down state. Note that if latency considerations
oundis achievedirtne system IS shut down even once, theregy ignored, then if a given idle period is less tharthe optimal
proving that this bound is very realistic and will occur in prac.

. . : o . algorithm will remain powered up for the duration of the idle
tice. We believe that latency is a critical design parameter t riod. If the idle period is greater tha the optimal algorithm
the system designer must account for while designing a systgyy power down at the beginning of the idle period. Of course
that has strict timing requirements. The system designer has?H)algorithm working with requests as they come in will not
manage latency as well as dissipate as little power as possi 'ow the length of an idle period when it begins since it will not

To test thg performance of a!l the prqposed algorithms aRAow the time of arrival of the next request. Such an algorithm
compare their performance against previously proposed heuféséalled an online algorithm and is explained next.
tics, we use the disk drive [27] of a laptop computer as an M we say that an algorithm isnline if it operates without
bedded system. We compared our algorithms with Hwang

) - . o “Knowledge of the arrival time or service requirements of future
Wu's heuristic algorithm [1] which is the most COmpremns"’?equests. In other words, it does not depend on the complete
algorithm that does not depend on the input sequence patte :

'§3ta set to make its decisions: decisions are made based on data
that has already arrived and the decision-making process may
Il. PROBLEM DEFINITION be changed as the historical data changes.

Our goal will be to minimize the total power consumption. At

Our model of the problem consists of a reactive real-time e same time. we would like to guarantee an upper bound on
bedded system that receives service requests online; the req‘{ﬁ%t?atency of any request which enters the system. Further, the

are not known in advance and do not necessarily fall into ap¥wer management strategy should reflect the effects of imple-
well-known distribution pattern. Each service requesSbmes entations in hardware as well as software.

with a service timed; that is also not known in advance and
could potentially vary from request to request. Requests are han-
dled in a first-come/first-served manner. The system cannot be
idle as long as there are requests waiting in the system. If there&Consider decisions that depend on future events of which the
are no requests waiting for the system, the system can be diettision maker has only partial knowledge. As there is no cer-
down during this idle period. If there are no requests waiting féain method to determine the future, such decisions are taken
the system and the system is off then when a request arrives,dhéne A common approach to solve an online problem is to
system must be turned on immediately in order to service thgsume that the future events are distributed according to some,
newly arrived request. Our goal is to design an effective powkmnown or unknown, probability distribution and to devise a deci-
management strategy for the system taking into account systsiom mechanism whose expected (average) performance is max-
performance (latency) and resources needed to implement simstzed subject to these assumptions. The following are some
a strategy. examples of online problems: 1) replace algorithms for main-
In this paper, we only consider a two-state shutdown systetaining a cache; 2) load balancing in a distributed environment;
the system can be in one of two shutdown states, i.e., shad 3) buying and selling stock in the stock market to maximize
down or idling. In [3] we have examined the multistage shugains.
down policies and presented algorithms that work under variousunder the assumption that there is some underlying proba-
state-to-state transitions policies. bility distribution which governs future events, one might try

I1l. COMPETITIVE ANALYSIS
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to “learn” these distributions so as to improve the decisions, Algorithm NONADAPTIVE:

ti by. This approach assumes that the real-life prob- (1) if (idle-state) then
as ime goes Dy. 1his approz p (2)  idle.intervals = idle.intervals + 1;
lems fall into some distribution that can be learned. An alter- (3) if (idle.intervals > k) then

native approach to solvingnline problems, calledompetitive @ shutdown

anaIySIS has been con5|dered_ by computer s_C|ent_|sts N rec?-pt. 1. The optimal nonadaptive online algorithm. The algorithms enters the
years. Sle_ator and Tarjan [23] 'ntrOduced_ t_he idea 'n_the CONERE state if it has no request to service during a basic unit of time.

of dynamic data structures. The competitive analysis approach

assumes that the input to the problem is generated by an advegefore we present the algorithm, we must indicate that the
sary. The performance of thuline strategyalgorithm), which - shytdown thresholé is usually measured using a base unit of
has no knowledge of the future events, is compared with th@he ¢, This base unit of time can be as granular as provided by
of anoptimal offline strategyadversary), which has completeihe system under consideration. As a result, we now define the
knowledge of the future and operates optimally based on this fflumper of these base time units that when elapsed provide us the

formation. Since its introduction, competitive analysis has begAytdown thresold. We define tisautdown-threshold estimate
successfully used to analyze online algorithms in various aregsan integer

of computer science: scheduling, graph coloring, robot motion

planning, computational finance, matchirigserver, and file b= F_ﬂ )
access and allocation in distributed systems. In this paper, we t
adapt competitive analysis to estimate the power dissipation i

an embedded system.

Consider a fixed sequeneaf inputs to an embedded system
Let P, (o) denote the minimum power that an offline algo
rithm (adversary) can dissipate on this sequence anklét)
denote the power dissipated by an online algorithnon the
same sequence. The algorithiris said to achieve theompet-
itive ratio r, if for all values of inputs

nExample 2: Consider the IBM disk drive in Example 1. Its
shutdown threshold is 21.176 s. Let us suppose that the finest
granularity of time it can measure ig.k. Hence, its shutdown-
threshold estimate i§21 176 472.3] = 21176473 ticks of a

1-us clock. This means that we now count the number of clock
ticks (during which the system is idle) that expire after which
the system is shutdown. This is typically the case in the design
of most hardware systems.

On the other hand, if the finest granularity the disk could

Py(o) <r- Popi(o). measure was 1 ms, its shutdown-threshold estimate would be
[21176.4723] = 21177 ticks of a 1-ms clock.

We are interested in finding the algorithrhthat minimizes  Throughtout the rest of this paper, we will use the shutdown-
the competitive ratio. The competitive ratio as a measure fthreshold estimate as the parameter to examine the performance
online algorithms was first introduced in [23]. We assume thaf all proposed algorithms.
the adversary generates the input sequence to the algadithm
based only on the description of the problem. Intuitively, for ok. The Algorithm

application, if an algorithral that measures power dissipationis g, is the energy dissipated during revivdl, is the revival

said to ber-competitive against an oblivious adversary, it meanstency, P, = E, /T, is the revival power, and; is the power
that in the worst case the algorithm would dissipatenes as gissipated when the system is idle. Using

much power as the optimal offline algorithm.
In order to simplify our analysis for the adaptive algorithms, b= [ E, w 1)
first we assume that the requests are serviced instantaneously. Pt

This implies that for request, the service timel; is zero. In E.

, NG, : k> )
Section VI, we show that relaxing this assumption causes the F; -t
algorithms based on this assumption to perform poorly. We E.<k-P-t 3)

present a theoretical analysis of these results. o _ ) ) )
the shutoff strategy is simple: wait fér— 1 idle time units and

then shut down the system. If a service request arrives before

k — 1 time units, the system is not shut down; otherwise it is

shut down aftek — 1 time units. Let us denote this deterministic
In this section, we present a nonadaptive online algorith@fline strategy by NNADAPTIVE as shown in Fig. 1. It says,

for power management. For nonadaptive algorithms, the serviggen the system is in the idle state (variahtile state is

times for a particular job is of no consequence and is not mdgue), it counts the number of idle intervals. When the number

eled here. The main strategy is to wait for a particular threshgiiidle intervals is greater than or equaltpthe system shuts

of idle time before shutting down the system. We establisho#.

lower bound on the competitive ratio for any nonadaptive on- Fig. 2 shows the behavior of the algorithnONADAPTIVE as

line algorithm, then show that the proposed algorithm achieve€ll as the behavior of the optimal offline adversary on a se-

this lower bound thereby proving that our algorithm is optimafiuence of input requests.

We note that this problem is identical to the ski-rental problem ) )

discussed in [13] and its solution is typically presented as an f= Analysis of Algorithm

troduction to online algorithms and competitive analysis. Lemma 1: Algorithm NONADAPTIVE is 2 — 1/k competitive.

IV. AN OPTIMAL NONADAPTIVE POWER MANAGEMENT
ALGORITHM
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adversary powers adversary powers
down down
idle period >=4 idle period <3 idle period >=4
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0 / 4 '/ o 12 i 16 20
job d arrives

job aarrives algorithm powers
down

job c arrives algorithm powers
job b arrives down

Fig. 2. The behavior of the algorithm and the optimal adversary on an input sequence. We assume that the first request (job) which arrives atvicee 0 is ser
instantaneously. The algorithm waits for four idle periods before it powers the system down, whereas the adversary powers it down immediatelgaihe ad
powers the system immediately, since the adversary knows when the next request will arrive, in this case at time 8 and there are more than fealsidainter
the other hand, when the next request (job) arrives at time 8, it is serviced instantaneously—neither the adversary nor the algorithm powerstiemrstheesy

the next request arrives at time 10. The adversary can power down immediately when the next request is(at tb&stase we have chosén= 4) units away.

The algorithm, on the other hand, has to wait in the idle state until it becomes advantageous to power down. We have assumed here for the salelditsimplicit
the requests (jobs) are serviced instantaneously.

Proof of Lemma 1:Let us assume thattime units expire 2) The adversary does not shut down the system at all. It
between two adjacent requests. This information is not known  remains idle until the arrival of the next request, in which
to algorithm NONADAPTIVE. We merely use it for the analysis. case it dissipates
However, since the adversary controls the sequence of interar-
rival times, n is determined by the adversary. If the system is n-t- b )
not shut down# < k — 1), then the offline algorithm and the
online algorithm dissipate the same amount of power since the)LI_h
both remain idle until the arrival of the next request.

If the system is shut dowm(> &k — 1), then the algorithm
NONADAPTIVE dissipates

units of energy.
e adversary tries to maximize the competitive ratio; it
maximizes the algorithms power dissipation and minimizes its
power dissipation. The adversary dissipates minimum power
only when the power dissipated by the two choices it has are
equal, which gives ua = k£ — 1.

Thus, using (4) and (5), algorithmdNADAPTIVE attains com-
petitive ratio

((k—1)-t-P)+E,

energy.
The first term comes from the fact that the systemwasidlefor,  ((k—1)-P)+ P.)-t((k—1)-P) + P,

(k — 1) time units of lengtht and dissipated’, units of power , =32, n-t P, k- P

in each time unit. The second term comes from the fact that the (k=1)-P)+k-P 1

system was shut down and will have to be restarted to service = kD, =2- %

requests (revival energy). .

Now using (3
9 @) The adversarial strategy depends on the valug tfe inter-

arrival time between the two requests. Since the adversary picks
the input sequence, the adversary has controlov€he adver-
=(2k-1)F -t sary chooses such that it causes the online algorithm to power
) ] down, forcing it to incur the additional power dissipated in pow-
If the system is shut dowm(2 k — 1), theoffline adversary ering up. Hence, the adversary pickt bek. This implies that
has two choices. the adversary picks a sequence where the requests come to the
1) The adversary shuts the system down after sbine n  algorithm as soon as it has powered down forcing it to dissipate
units of time. In this casds’ might as well be 1 since any the extra energy in powering up. On this sequence, the adversary
value of &’ > 1 will imply that the adversary dissipatesshuts off as soon as an idle sequence is encountered. Therefore,
more power than required. Therefore, the adversary shutg adversary picks to be k and dissipates - ¢ - P; units of
down the system as soon as the first idle period has begmergy. This leads us to the lower bound argument presented in
encountered, provided the adversary knows that this idzction 1V-C.
period will be greater thai time units. Note that the  The factor ¥ is a consequence of the quantization of time
adversary knows when the next request will arrive arghsed on the granularity of the clock used to measure time. It is
can therefore make this choice when it is advantageousdgsy to see that if we assume that time is continuous, the com-

(k=1)-t-P)+E.<((k-1)-t-B)+k-t-F

do so. In this case, the adversary dissipates petitive ratio will tend to two sincé will tend to infinity. Based
on the type of embedded system, hardware or software, we can
E.<Ek-t-P (4) make some assumptions about the discreteness of time which

will effect the competitive ratio. We do not consider the increase
units of energy. in latency of the system whose power we were are trying to
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manage in this analysis; we use the experimental results to reldn hardware systems even though they both use the same al-
our conclusions. gorithms.

C. Lower Bound Proof
V. ADAPTIVE POWER MANAGEMENT ALGORITHMS

In this section, we will show that algorithmdWADAPTIVE is . ]
optimal. This involves proving a lower bound for the competi- Adaptive power management algorithms change the length

tive ratio of the problem. of the interval after which shutdown occurs dynamically based
Lemma 2: There exists no nonadaptive deterministic algdn Past performance. Such algorithms typically have improved
rithm that can attain a competitive ratio less tian 1/k. performance due to their ability to base decisions on the nature

Proof of Lemma 2:First, notice that any deterministic®f the data and dynamic system behavior. To begin with, we
strategy for this problem is a “threshold” strategy. A solutioASSUMe tha}t egch'lnterarnval t|me is mdt_apendently chosen from
can be completely characterized by specifying a threshéfﬂf same dls_trlbutlon and adaptive algorithms attempttq “Iea_rn"
after which the system shuts down. L§t, be any arbitrary this distribution. F_urther,_ we also assume that the service time
deterministic strategy where the “threshold”sis There are for each request is negligible. In Section VI, we relax this as-

two possible cases for analysis. sumption_ and pre_zsen_t experimental results that shovy the effect
1) m < k: S, attains a competitive ratio of o{hmodellng service times on the performance of various algo-
rithms.
We show analytically that the lower bound on the competitive
(m—1)-t-P,+E, <14 k-1 S 9 ©6) ratio for adaptive algorithms is better than the competitive ratio
m-t-F - m for nonadaptive algorithms. Learning ttreie distribution that
) N ] generates the interarrival times would be very memory intensive
2) m 2 k: 5y, attains a competitive ratio of since the algorithm would have to keep track of a significant
part of the history of the sequence. Since this is not practical,
(m—1)-t-P,+E, S we present an algorithm that uses the last input sequence to pre-
E, = () dict the next event. We also show that this algorithm is 3-com-
(k—1)-t-P,+E, 1 petitive against an all knowing adversary. The analysis in this
E =2- (8)  section builds upon the work of Karliet al.[8] and specifically

their formulation of the spin block problem [7]. We augment

Therefore, from (6) and (8) we see th&, consumes more their theoretical work with experimental results. However, the
power than algorithm NNADAPTIVE. Since the choice of,, authorsin [7]and [8] do not model service times in their anal-
was arbitrary, Lemma 2 is proved. m VSIS

Theorem 1: Algorithm NONADAPTIVE is optimal.

Proof of Theorem 1:Lemmas 2 and 1 prove that unde/. Lower Bound for any Adaptive Algorithm

the assumption that time has been discretized, strategy, e case of adaptive algorithms, assume that each interar-
NONADAPTIVE is optimal. The same analysis applies under the, o) time is independently chosen from some distribution, say
assumption that time is continuous but the bound is 2. 11(¢). Then, technically it is just a matter of “learning” this dis-
tribution and being able to pick the shutdown time using the
D. Effects of Discretizing Time estimator distribution. This implies that there are two subprob-

The term ¥k occurs in the competitive ratio since we havéems to solve.
assumed that time is discrete and broken ihtmtervals of » Learn thetrue distributionfrom which the interarrival
time ¢, each after which we shutdown the system. If we as- times are being generated.
sume that time is continuous, it is easy to see that the algorithme Pick a shutdown time, say.
NONADAPTIVE will be 2-competitive. The discreteness of time Let us begin by assuming thal(¢) has been learned by the
has implementation implications for hardware and software sysgorithm. In order to distinguish between tinee distribution
tems and are addressed in this section. and the learned distribution, we denote the learned distribution
In hardware systems, the system clock specifies the gramy-=(¢). We also assume that time is continuous for the purpose
larity of time for that system. Let us denote the period of thisf analysis.
clock byt. In order to estimate,, we will have to wait some  Let o denote an arbitrary interarrival time generated from
number of clock cycles of period Depending on whetheris  II(¢). Now, let algorithmA shut down the system afterunits
a multiple of & or not, there will be an error in the estimationof time in intervalo.
We have used the ceiling operator in our analysis. Theorem 2: No adaptive algorithm can achieve a competitive
Moreover, hardware systems can be shut off aftéicks of ratio better thare/(e¢ — 1).
the system clock. In software systems, however, thereisno guar- Proof of Theorem 2:We prove the lower bound by
antee that the system (e.g., an X-server) can be shut offlafteshowing that algorithmai can be no better thaty (¢ — 1)-com-
time units. Software systems get shutoff interrupts whose getitive. Lett; be a real number such that = E,./P;. Recall
rival times could differ based on the load on the systems. Adfaat this is the same definition we have fqrin Section II. If
result, software systems could potentially dissipate more powee assume thatng 4 (o) is the energy dissipated by algorithm
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Algorithm ADAPT:
(1) 7 = curr_arrival time - prev_arrival time;
(2) if (idle_state) then

A when it encounterg, then the expected energy dissipated
by Ais

- S (3) idle_intervals = idle.intervals + 1;
= . iy 2 . P . (4) if (+ > k) then
E[Enga(o)] = /0 t-n(t) Pzdt—i—/T (7- P, + E,.) n(t)dt. ) shutdawn
(9) (6) else
; P ; ; e (¢)) if (idle_intervals > k) then
The first term within the integral is the energy dissipated & shutdown

when the interarrival time is less than the shutdown threshold

7 picked by algorithmA. The second term is the energy diseig. 3. The 3-competitive nonadaptive algorithm for power management.
sipated when the interarrival time is greater than the shutdown

threshold. In this case the system gets shutdown: the system digorithm will not be able to attain the bound proved here. To

sipatesr - P; before shutdown andl,. energy for revival.
Therefore

T

E[Enga(o)) =P, ( /

+/T°° <T Py %) -w(t)dt> (10)

E [Bnga(o)] =P, ( |t wtar
+/TOO (te +7) -w(t)dt) .

t-w(t) - Pidt

11)

Algorithm A has to choose values ferbased onr(¢) such

estimatell(¢) accurately, the optimal algorithm may have to
maintain accurate statistics by keeping track of the history of
the interarrival times of requests. A practical alternative to this
algorithm is to keep track of the last few interarrival times in
order to determine what to do the next time after a request has
been serviced. Interestingly, a different version of this algorithm
is presented by Hwang and Wu [1]. The authors arrive at their
algorithm by examining trace patterns.

B. A 3-Competitive Adaptive Algorithm

Fig. 3 outlines the algorithm: is computed dynamically and
determines when the system will be shutdown.
We will now show that this algorithm is 3-competitive. There

that the expected energy dissipated is minimized. The optimah two cases to consider: a)< k: This case is identical to

offline algorithm (adversary) has

t-Pm

t <t
Engodo) = {3 15

t > tg.

In other words

B Engon (o)) = |

T 2]

t-B-yr(t)dtJr/ E, - r(t)dt
th

= B,

E [Engop(o)] =F, < /0 Nty + - 7r(t)dt>

tr %

E[Engop(o)] =F, < /0 "ty + / Tt -w(t)dt) .

tr

the deterministic case and we have shown that this approach
achieves a competitive ratio of 2. b) > £: In this case, the
previous interarrival time was greater tharand as a result in
the previous interval, the adversary dissipated at l&asf’;
energy, whereas we dissipatéy (to revive the system), since
we shut down the system as soon as it was idle. Hence, we can
add the power dissipated in this interval to the power dissipated
by the adversary in the previous interval thereby amortizing the
power dissipated in this interval with the power dissipated in the
previous interval. This yields an overall competitive ratio of 3.
This algorithm is similar to the one presented by Hwang and
Wu [1]. Their algorithm is used for software systems and com-
putesr as the cumulative weighted average of the previous in-

The adversary picks the distributidiit) in order to max- terarrival times. This computation uses significant hardware re-
imize the competitive ratio and the expected energy dissipag@Hrces. Therefore, this strategy is not suitable for implemen-
by the algorithm. The algorithm picks+ to minimize the com- tation into hardware. Since they use a larger history of interar-

petitive ratio.

rival times to compute their shutdown threshold, their algorithm

Solving the differential equations obtained by differentiating/ill be more competitive than BapT, but only marginally so.

twice with respect ta-, we obtain

et/

1
D e
(1) {07

0<t<ty
otherwise.

The 3-competitive algorithm, BAPT is simple and can be used

in both in hardware and software systems. Also, the analysis al-
lows system designers to identify power critical subsystems and
incorporate aggressive power management techniques for these
systems by committing to more resources upfront in the system

By settingfooo #(t)dt = 1, the algorithmA yields a competitive design process.

ratio of

c

[~ 13819767 < 1.6. (12)

e —

VI. M ODELING SERVICE TIMES
Adaptive power management algorithms change the length of

Since the choice of was arbitrary, the analysis applies tahe threshold after which shutdown occurs dynamically based

any interval in the request sequence. This shows that thereispast performance. Such algorithms typically have improved
no algorithm that can achieve a competitive ratio better thgerformance due to their ability to base decisions on the nature
e/(e—1). m of the data and dynamic system behavior. Some power man-
In this solution, we have given the algorithm the advantaggement algorithms have assumed that each idle period can be
of estimatingll(¢) exactly. However, if this is not the case, theconsidered to be a random variable and the length of each idle
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period is independently and identically distributed. These algby the University of California at Berkeley. We sieved the data
rithms attempt to learn the distribution of idle periods as tim& that we look at requests made by a single user to the file
progresses and optimize the threshold based on the estimatsesfer. The original data was a union of requests obtained from
this distribution [7], [8]. We have also presented such an adagt users that accessed data from the file server over a period of
tive algorithm in this paper. 7 days, 24 hours a day. In this paper, we picked one day from
Other algorithms have assumed that there is significant ctirese 7 days at random—this was day number 6. It so happens
relation between the length of recent idle periods and the lendftat there were 12 hosts that made requests to the Auspex server
of idle periods in the near future. These strategies use recent ioitethat day and so we have 12 different traces. Trace t6.H1064
periods to predict whether the upcoming idle period is likely teepresents the requests made by host 1064 to the Auspex server
be more or less than the parameétaderived in Section Il. Re- on day number 6. We believe that the data obtained from the
call thatk is the length of time such that if the system is idle foNOW project is representative of a typical sequence of requests
time k&, the energy that is expended is the same as the energythat the user of a laptop would generate which includes read,
quired to revive the system from the powered down state. If anrite, and update requests.
online algorithm knew whether the upcoming idle period was The disk drive has the following power characteristics. Its in-
going to be shorter or longer thanit could perform optimally. ternal clock operates at 10 microseconds. The average power
If the interval is less than, it will stay powered up, otherwise dissipated in servicing any request is denotedihy= 0.85
power down at the beginning of the idle period. Thus, given awatts. The revival power dissipated#s = 4.5 watts. The re-
estimate of the length of the upcoming idle period, if the estival latency isT,. = 4 s. Using these parameters, we modeled
mate is less thah, stay powered up; if it is greater tharthen and simulated the following scenarios to compute the power dis-
power down immediately. If, however, the algorithm chooses gipated.

stay powered up and finds that the idle period has Iastedktimel) Algorithm Optimal This algorithm is assumed to know the
the algorithm then powers down. This latter step is important in sequence of arrival of requests and their service tatién
case the idle period is extremely long. These adaptive schemes,gyanceAs a result, it can make decisions based on know!-
are very effecuve if the arrivals are very bursty, a property which  eqge of the future. The algorithm will shut down the system
characterizes many request arrival sequences. That is, the Préimmediately if the next idle period is greater thartime
dictions are accurate if short idle periods tend to be followed by |,nits. An oracle will keep the system idle if the idle period is
short_idle pe_riods and long idle periods tend to be followed by |ess thark time units. Any proposed algorithm tries to com-
long idle periods. o pete with this oracle strategy. This oracle is also referred to
The ApapT algorithm shown in Fig. 3, uses the length of the a5 the optimal adversary since every algorithm is trying to
last idle period to predict the length of the next idle period. The gchieve the results obtained by an algorithm that has knowl-
algorithm presented by Huang and Wu [1] predicts the length edge of the future.
of the next idle period by an exponentially weighted average 9f Algorithm IMMEDIATE: This algorithm shuts down the
the lengths of the previous idle periods. None of the previous system whenever it sees an idle period, however small, and
studies incorporates service time or power-up latency into their jhcurs the overhead cost of revival.

models. That is, they assume that these values are zero.  3) Algorithm Adapt This algorithm uses the previous interser-
tive arrivals in a sequence. We denote interarrival time between greater thark it shuts down immediately assuming that the

requesty and;j + 1 asl; = a;y1 —a;. Interservice ime isde-  next idle time will be greater thah time units. If7 is less
fined as the time between the end of one request and the arrivalthan;, it keeps the system idle for a period bfunless a

of the beginning of the next request. The adaptive algorithms ney request arrives.

described here were all introduced in the context where all Sefy Algorithm HwangWu This algorithm is an adaptation of
vice times and power-up times are assumed to be zero. In this jyang and Wu's algorithrt]. It uses a cumulative average
case, the length of the last idle period is the same as the last; of the interservice times to predict the next idle period. If
interservice time which is also the same as the last interarrival  is greater thar, it shuts the system off as soon as an idle
time. Thus, it is not obvious which value to use with the adap- period is seen, otherwise it keeps the system idld: fame
tive schemes when introducing timing considerations into the ynjts before shutting down the system.
model. Although we experimented with all three values, the re-
sults we present here use interservice time since that value Seg\m]?)iscussion
to capitalize the most on correlations in the arrival sequence. ™
Figs. 4 and 5 show the performance of the four power man-
agement algorithms in terms of power efficiency and latency.
The latency of the system as a result of power management does
We use the disk drive [27] in a laptop as an embedded systemt increase any more than 4 s, which is the analytical upper
We have obtained traces for the use of an Auspex File Serbaund on the increase in system latency. AlgorithrT®AL
[25] from Berkeley’s NOW project and apply these traces as the optimal performance one can expect from any algorithm
stimuli to the laptop’s disk drive. This drive and the traces werince GrTIMAL has complete knowledge of the future and hence
also used in the experiments performed by [2]. The data is albkes optimal decisions. We note thatEDIATE outperforms
the requests that were made to an Auspex file server maintairleel other algorithms in terms of power dissipation on two

VII. EXPERIMENTAL RESULTS
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Fig. 4. Power dissipation in watts of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the power dissiretied whe
particular power management algorithm is used for the disk drive. Inmediate’s power dissipation for trace 4 and trace 9 is Iessthan A
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Fig.5. Increase inlatency (in seconds) of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the imrepadeniat
that particular power management algorithm is used for the disk drive.

traces. However, its effect on latency is worse thaTi@AL this hypothesis, we ran all the experiements varyihdrom 4
and ADAPT. Further, we hypothesized that the peformance sf to 0.4 s and 4 ms. The results of our experiments are shown in
IMMEDIATE would get better ag;. decreased. In order to testTable V and they validate our hypothedids not unreasonable
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Fig. 6. Number of shutdowns of the laptop’s disk drive when the Auspex server traces are applied to it. Each column shows the number of shutdowns when tha
particular power management algorithm is used for the disk drive.

for us to assume thaf, can assume these smaller values Inorder to test this hypothesis, we ran#eT and MMEDIATE
since the IBM disk [27] has these as the revival times for somoe the same data, except that we artificially set service time and
intermediate low power idle states. The penalty of being power-up time to be zero. The results are shown in Table Ill. Al-
these low power idle states is that the power dissipated in thegarithm ADAPT does better on all traces. The reason thad#y
states is not zero, rather less than the power dissipated in tisaot doing better on the two traces when service times are mod-
idle state. eled is explained below.

There are two primary reasons for the successmoEDIATE Table | shows the number of “mistakes” made byaT on
over the other adaptive algorithms on the two traces. The firstalt the traces. That is, it shows the number of timeaAT pre-
that the patterns in the request arrival sequence which the addipted that the next idle period would last less than tinvehen
tive algorithms were exploiting are no longer present when sér-actually lasted longer. In addition, it shows the number of
vice time and power-up time are incorporated into the modéimes ADAPT predicted the next idle period would last longer
Fig. 7 shows the the sequences thabAT tries to exploit to re- than timek, but it actually lasted less time. Similar results for
duce power and the behavior ofMEDIATE on these sequences.IMMEDIATE are shown in Table Il.MMEDIATE has only a one-
Secondly, Fig. 6 shows the number of shutdowns for each sifled error: by shutting down immediately, it is always in effect
the four algorithms. Although BaPT is making fewer mistakes predicting that the idle period will be longer thanThe average
than MMEDIATE in predicting whether the upcoming idle pe-wasted energy for each mistake is also given. This is the extra
riod is greater than or smaller thdn the mistakes made by amount of energy expended because the algorithm predicted in-
ADAPT are on average more costly than the mistakes made dayrrectly. Note that the most costly kind of mistake is when the
IMMEDIATE and these mistakes are more expensivd,ade- algorithm predicts that the idle period will be short when it is in
creases. We discuss these two issues in more detail below. factlong. Since only AAPT makes this kind of error, itis paying

In bursty arrival patterns, there is a sequence of very shartmuch higher price for each mistake even though it is making
interarrival times followed by a sequence of longer interarrivééwer mistakes.
times. However, we found that when the service times andSuppose an algorithm stays powered up (thinking the idle pe-
power-up times are incorporated into the model, many abd will be short) and then powers down when the idle period
the shorter interarrival times do not translate into idle timebas lasted time units. Its costi& - P, + F,. = 2F,.. If the algo-
because during bursts, requests get queued up in the systenrihih had powered down, it would have expended dilyunits
executed one right after the other. The queue finally emptieéenergy. Thus, the wasted energys. On the other hand, if
out when the burst is over and there is a longer interarrival timiepowers down immediately and the length of the idle period is
This tends to result in less correlation between the previous< k, then the algorithm spends, = % - P; but could have
service time (or previous idle time) and the nextidle time  only spent- ;. The extra energy expended is—t) P; which is
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is shortie.t<k islongie. t >k
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time is short Adapt dissipates Adapt dissipates
ie. t<k Pi till next request and (k Pi) before shutdown
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Fig. 7. ADAPT makes guesses about the next interarrival times. Its guess is either correct or wrong. In this figure, we show the power dissipstedvbgri\

it guesses correctly as well as when it guesses incorrectly. We also compare the power dissipatemblyreg on the decisions made bypAPT. In this figure,

ADAPT tries to exploit the sequences where it guesses that the interarrival times are short. On the other hand, it dissipates a large amount of powgeleatien this
is incorrect. As we show, when we begin modeling service times, in some sequences short interarrival times are replaced with longer intesailfhialcanses
ADAPT to perform poorly as compared witlVEDIATE on some sequences and especially whénsmall.

TABLE |
STATISTICS THAT SHOW THE NUMBER OF TIMES ADAPT PREDICTED THENEXT IDLE INTERVAL TO BE GREATER THAN & AND LESSTHAN k. THE TABLE SHOWS
THE NUMBER OF TIMES ADAPT WAS WRONG IN BOTH CASES AND THEENERGY DISSIPATED DUE TO THESE WRONG DECISIONS THE LAST COLUMN DISPLAYS
THE AVERAGE POWER DISSIPATED PERWRONG DECISION MADE BY ADAPT. IN THIS CASE, T’ (REVIVAL TIME) ISASSUMED TOBE4 s

Error Statistics for ADAPT
Predicted idle period < k | Predicted idle period > k
Traces || Wrong | Energy Wasted | Wrong | Energy Wasted Total Avg Waste
in Joules in Joules Wrong in Joules
Decisions | per wrong decision

t6.H1062 188 3534.400000 188 1461.362552 376 13.286603
t6.H1074 0 - 0.000000 1 15.396678 1 15.396678
£6.H2012 343 6448.400000 344 2552.818586 687 13.102210
t6.H2014 427 8027.600000 428 3250.438041 855 13.190688
t6.H2149 209 3929.200000 209 1672.747489 418 13.401788
t6.H3069 350 6580.000000 351 3554.703435 701 14.457494
t6.H3073 261 4906.800000 261 1844.375596 522 12.933287
t6.H3113 635 11938.000000 635 4269.980183 1270 12.762189
£6.H4060 111 2086.800000 111 971.663189 222 13.776861
t6.H4119 227 4267.600000 227 1652.387344 454 13.039620
t6.H4127 142 2669.600000 142 1307.189201 284 14.002779
t6.H4181 132 2481.600000 132 1159.949774 264 13.793749

typically only a fraction of£,.. This explains why the first kind  If the distribution is known, then the optimal online algorithm
of error is more costly than the second kind of error. will use the equation above and choas#& minimize the ex-

In Section V, we present a detailed theoretical analysis of thpected cost.
phenomenon under the assumption that the length of each idlén order to understand whyMEDIATE performed as well
period is generated independently by identical distributions. Véis it did, we determined the distribution based on the statistics
have also discussed the details relevant to power managemeifirthe idle periods of each sequence and then determined the
an earlier section. Lef’ be the random variable which denote®ptimal = for each sequence. The results are given in Table IV.
the length of the idle time. Le®P[T" = ¢] be the probability that Each threshold is expressed as a fraction of the time intérval
T = t. For simplicity, we will assume that time is discretizedWhat is noticeable here is that in all but a very few cases, the
Then, if the algorithm’s threshold is, its expected amount of optimal threshold is small which indicates thatMEDIATE is
energy dissipated is using close to the optimal threshold (traces 4 and 9). Thus, if
we are restricting our attention to algorithms which use a fixed
- oo threshold, then for the data used in our study, a threshold of zero
ZP[T =t]-t- P+ Z P[T =t(r- P, +E,). is closer to the optimal. Further, & decreases, the optimal
o b1 threshold decreases as well, which means tR&tEDIATE is
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TABLE I
STATISTICS THAT SHOW THE NUMBER OF TIMES IMMEDIATE PREDICTED THE
NEXT IDLE INTERVAL TO BE GREATER THAN k. THE TABLE SHOWS THE
NUMBER OF TIMES THE DISK WAS SHUTDOWN AND THE NUMBER OF
TIMES THIS DecCISION WAS WRONG. THE TABLE ALSO SHOWS THE
POWER DISSIPATED DUE TO THE WRONG DECISION. IN THIS CASE, T
(RevIVAL TIME) IS ASSUMED TOBE 4 s

TABLE IV
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BEST SHUTDOWN THRESHOLD COMPUTED FROM ALL POSSIBLE THRESHOLDS
AVAILABLE FOR A PARTICULAR TRACE. THE THIRD COLUMN SHOWS THIS
THRESHOLD AS AFRACTION OF k. THE LAST COLUMN PRESENTS THEPOWER
DISSIPATED IFTHIS THRESHOLDWERE USED INSTEAD OFk AS THE SHUTDOWN
THRESHOLD. IN THIS CASE, WE ASSUMETHAT T;. (REVIVAL TIME) IS4 s

Best Shutdown Threshold
Error Statistics for IMMEDIATE Trace Best Threshold | Best Threshold Power Dissipated
Traces Total Wrong Energy Wasted in clock ticks | as a fraction of by using threshold
shutdowns | decisions in Joules k for shutdown (milliwatts)

per wrong decision $6.H1062 439841 0.198864 0.828485

6.H1062 1501 776 11.584568 t6.H1074 2119139 0.958121 0.732872

t6.H1074 6136 6136 10.803558 £6.H2012 5676651 2.566571 1.363959

16.H2012 3482 3084 10.284557 t6.H2014 35938 0.016249 10.675742

16.H2014 1612 536 7.805614 +6.H2149 3013671 1.362564 2.764495

62149 1095 704 3315458 6.H3069 6029685 2.726187 0.716727

t6.H3073 166408 0.075238 7.497255

tg:ggggg ?8(1]; ffoz ?,:(Zg;gf t6.H3113 6002734 2.714002 1.116283

6 H3113 3301 313 5515100 6.H4060 244893 0.110723 4.559279

<6.12060 1958 5 9558162 t6.H4119 4628491 2.092669 3.162420

: : t6.H4127 350080 0.158281 1.684208

t6.H4119 || 4289 4207 7.632398 t6.H4181 200443 0.090626 2.317981
t6.H4127 1187 494 10.914968
t6.H4181 1280 361 10.358660

an upper bound on the latency of the system in the presence
TABLE Il of a power management scheme for the system. Such an upper

STATISTICS THAT SHOW THE POWER DISSIPATED BY ADAPT AND |IMMEDIATE
WHEN SERVICE TIME AND LATENCY ARE NOT MODELED, I.E., THEY ARE
CONSIDERED TOBE ZERO. WE ASSUME THAT T. (REVIVAL TIME) IS4 s

bound allows the system designer to account for latencies in
the system that arise due to power management strategies for

specific timing critical subsystems.

Power Dissipation with Zero Service Time and Latency
ADAPT IMMEDIATE
Trace Power dissipated | Shutdowns || Power dissipated | Shutdowns
t6.H1062 0.457607 981 10.961039 33656
£6.H1074 0.850326 1 21.971276 67470
6.H2012 0.859521 995 10.827513 33236
£6.H2014 1.053709 2108 2.360304 7246
t6.H2149 0.512088 865 3.398084 10395
t6.H3069 1.094657 849 22.698990 69710
t6.H3073 0.579440 1090 1.585281 4868
t6.H3113 1.311975 2154 13.803080 42391
t6.H4060 0.971151 1909 2.932487 9003
t6.H4119 0.996386 535 5.144162 15797
t6.H4127 0.761427 1443 5.565346 17090
t6.H4181 0.443369 1098 4.333740 13306

A. Bound the Maximum Wait Time

Letos be any sequence of arrivalsiofequests into the system
ordered according to arrival time. Since the service of these re-
guests is on a first-come-first-served basis, we number the re-
quests from 1 ta. Leta; be the arrival time of requegt Letd;
denote the service time for requgstf the system is kept pow-
ered up the entire time, then the latency of each request is min-
imized. Suppose the following algorithm is adopted. Consider
the arrival of requesf at timeg;. If the system is idle at time
a4, then requesj is begun immediately and incurs no latency.
Alternatively, suppose that the system is busy when reqguest

arrives and suppose that the last idle time ended with the arrival
using close to the optimal threshold and hence performs be@érequest:. Then the system will be free to begin requgstt

than ADAPT.

timeay, + > 7_;

' d;. The system starts requésat timea;, and

Clearly, it is not always the case thatMEDIATE outperforms must complete requeststhrough; — 1 before starting request

ADAPT since that will depend on the parameferelative to
the input sequence. However, we have demonstrated that timifig
considerations can be important and should be incorporated into
any model used to assess power management schemes. We have
also demonstrated the effect of system parameters on the power
management schemes. In order to demonstrate the effects of the
parametert on the performance of the algorithms, we varie
the revival times from 4 s to 0.4 s and to 4 ms and computed the
power dissipated by the various algorithms. This result is shown
in Fig. 5. We see that the performance of algorithmiEDIATE
becomes better 85. decreased(increases). In general, a suc-
cessful power management scheme will depend on typical ar-
rival patterns, service times, as well as system parameters.

VIIl. EFFECT OFPOWER MANAGEMENT ON LATENCY

=t

4. This means that the latency of requgstenoted by (o, )

W(o,7) ap + Z di | —aj. (13)
)ote that for any £ k such that < j
i—1 i—1
ai—l—Zdl — aj < ak—i—Zdl —aj- (14)
=7 =k
Thus, the wait time of requegtis
W(o,j) = max a; + Z di | —a;. (15)

In this section, we present a proof that bounds the maximuie call this theinherent wait timeof request; since it is
wait time for any request that enters the system. This givesthe smallest possible wait time achievable for jplby any
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TABLE V
PERFORMANCE OF THETHREE ALGORITHMS ASk IS VARIED. THE VARIATION OF k |S DONE BY DECREASINGT ., THE REVIVAL TIME FROM 4 s DOwN TO04 MS
IN INTERVALS OF 0.1 s. THE PARAMETER k& CAN BE REDUCED BY DECREASING E/,. AS WELL, BUT WE HAVE KEPT THAT FIXED IN THIS CASE. THIS TABLE
SHows THE CASESWHEN THE ALGORITHM IMMEDIATE PERFORMSBETTER THAN ALGORITHM ADAPT. THESE CASESARE MORE PROMINENT WHEN k& |S SMALL
AND ARE INDICATED BY THE BOLD TYPEFACE NOTICE THAT WHEN k& = 1800, THE ALGORITHM IMMEDIATE COMPLETELY OUTPERFORMSADAPT. THIS TABLE
SHOWS THAT THE PERFORMANCE OF THEALGORITHMS CAN VARY DEPENDING ON THEVALUE OF k: SIMPLE ALGORITHMS CAN OUTPERFORMCOMPLICATED
ALGORITHMS. AS A RESULT k NOw BECOMES ANIMPORTANT PARAMETER IN THE DESIGN OF THESYSTEM SINCE IT INFLUENCES THEPERFORMANCE OF
SHUTDOWN ALGORITHMS WHEN THEY ARE USED TOMANAGE POWER DISSIPATION

Power dissipated by algorithms over varied k

Trace Algorithms || T, =4 secs || T, = 0.4 secs || T, = 0.04 secs | T, = 4 msecs
k = 1800000 || k = 180000 k = 18000 k = 1800
ADAPT 0.415675 0.076902 0.026423 0.010249
t6.H1062 | HWANGWU 0.387899 0.075314 0.026575 0.009963
IMMEDIATE 0.489422 0.129385 0.051770 0.009799
ADAPT 0.850523 0.345165 0.090420 0.021633
t6.H1074 | HWANGWU 0.850523 0.328085 0.103810 0.019517
IMMEDIATE 1.998442 0.332986 0.117072 0.019341
ADAPT 0.723009 0.189156 0.029796 0.009817
t6.H2012 | HWANGWU 0.707956 0.188612 0.031543 0.009981
IMMEDIATE 1.135051 0.179658 0.044123 0.010028
ADAPT 0.644899 0.058420 0.007886 0.001949
t6.H2014 | HWANGWU 0.588159 0.057169 0.007826 0.001808
IMMEDIATE 0.525061 0.058020 0.008580 0.001786
ADAPT 0.357596 0.060482 0.017480 0.006314
t6.H4127 | HWANGWU 0.357999 0.060197 0.017659 0.005824
IMMEDIATE 0.387226 0.079644 0.026648 0.005555
ADAPT 0.344162 0.058943 0.010101 0.002814
t6.H2149 | HWANGWU 0.348560 0.057288 0.010081 0.002681
IMMEDIATE 0.358022 0.057139 0.012452 0.002610
ADAPT 0.412118 0.054168 0.008870 0.002999
t6.H4181 | HWANGWU 0.407473 0.053066 0.008862 0.002928
IMMEDIATE 0.416951 0.061512 0.014951 0.002748
ADAPT 0.977732 0.291366 0.065186 0.020864
t6.H3069 | HWANGWU 0.962464 0.281681 0.066539 0.019689
IMMEDIATE 1.632077 0.324674 0.093377 0.018982
ADAPT 0.375958 0.045307 0.008469 0.001818
t6.H3073 | HWANGWU 0.359632 0.043941 0.007542 0.001671
IMMEDIATE 0.326550 0.044165 0.008266 0.001642
ADAPT 0.965757 0.163703 0.041242 0.015232
t6.H3113 | HWANGWU 0.957095 0.159952 0.041993 0.014283
IMMEDIATE 1.076102 0.218932 0.068350 0.013656
ADAPT 0.405936 0.055853 0.009058 0.002668
t6.H4060 | HwWANGWU 0.402309 0.055254 0.009252 0.002582
IMMEDIATE 0.409773 0.057108 0.011852 0.002536
ADAPT 0.930934 0.177891 0.023093 0.005275
t6.H4119 | HwWANGWU 0.909331 0.172831 0.022870 0.004845
IMMEDIATE 1.396658 0.178235 0.026991 0.004745

power management scheme. The maximum inherent wait tithat requesy waits is just
incurred by any request ia will be calledthe inherent wait
time of sequence and will be denoted byV (o). -1
Part of the problem definition states that any algorithm must ax + Z di | —a; =W(o,j). (16)
keep the machine on as long as there are requests to service. =k
Therefore, we consider only the algorithms that consider POW- ¢ 1o algorithm A did power down during this time period,

ering down the system only during an idle period. . S
Lemma 3: The wait time of any power management algot—hen the amount of time that requgsiaits is

rithm on any sequenceis at mostV (¢) + 7. T,. is called the i1
revival time for the system. T .
i ] ] ) | an + di| —a; <T,.+W(a,j). 17
Proof of Lemma 3:Fix an arbitrary algorithri. Consider , ; l ! (.4) 17
request;j in o. Suppose that whep arrives, the previous idle
period ended with the arrival of requést If the algorithm A Since this is true for every requeistit follows that no request
did not power down during this period, then the amount of timeaits longer thariV (o) + T,.. [ |
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Next we prove that under a worst case analysis, an algorithmin this paper, we have presented an upper bound on the in-
can always béorced to have a request which must wait an aderease in latency of the system in the presence of a power man-
ditional timeZ;. as shown in the following lemma. agement algorithm. This upper bound allows a system designer

Lemma 4: Let A be any deterministic power managementato get a handle on the worst case increase in latency he may
gorithm whose energy dissipation is some finite though variatdacounter when determining a power management system for
value. Given a sequeneewith an inherent wait timé&V, when timing critical subsystems. Since this latency is a function of
Ais used orv, there is a sequeneg whose inherent wait time the revival time, the system designers can make design deci-
is W for which A has a request which is delayed By + 7. sions that can shorten the revival time for subsystems for which

Proof of Lemma 4:Pick an arbitrary algorithmi. Suppose aggressive power management may be required.
that after a period of time, the algorithm will shut down the  We have also presented a performance comparison between
system if no requests have arrived.dannot be infinite since two algorithms, AAPT and MMEDIATE, on a set of trace data
the energy dissipation is finite). Pick any sequeacaich that [25] applied to the disk of a hard drive [27]. Our experimental
W(o) = W. Letj be a request such thlt (s, j) = W. Sup- results show that if service times of arriving requests are mod-
pose that under the algorithm which nevers turns the system eliéd, the relative performance of algorithms can change. This
the idle period previous tg's arrival ends with the arrival of change is even more prominent when the revival time changes
request:. Make a new sequeneg of j — k + 1 requests. The as well. We show that the simple algorithm that shuts down the
arrival time of request in the new sequence is denoteddy system whenever it encounters an idle period surprisingly per-
and will ber + a;14—1 — ax from the old sequence. The du-forms better than adaptive algorithms suggested in the litera-
ration of request in the new sequence is denoteddjyand is ture on the data used here, especially whéssmall. We pro-
d;+r—1 from the old sequence. Since the algoritbthhpowers vide an analytical explanation for this empirical result. How-
down after timer, the delay of requegt— k& + 1 in ¢’ willbe  ever, MMEDIATE’s better performance comes at the cost of in-
creased system latency. This paper demonstrates the power—la-
tency tradeoff and provides insight into the effects of modeling
J—kt1 service time on the power dissipation algorithm.
<T,, + Z d;) — gt (18) Note that it is not always the case that timing considera-
=1 tions will have such an important impact on the performance

J of power management strategies. This will depend on the distri-
=T, + a; + Z di — a; (19)  pution of interarrival times of requests as well as service times.
=k In addition, MMEDIATE outperforms MAPT as the parameter
=T+ W(o,j) =T, + W(o). (20) 1 decreases relative to the input sequence. However, we have

demonstrated that timing considerations can be important and
o ] N should be incorporated into any model used to assess power
isting sequence, such thab’ has an inherent wait time 8V 1,5n3gement schemes. We have also demonstrated the effect of
and at least one requestdfwill be delayed by’ +7... B gygiem parameters on the power management schemes. In gen-
_ Theorem 3:1n the presence of a power management alg@;a| 4 successful power management scheme will depend on
rithm A, that shuts down a system when itis idle and revives{iica| arrival patterns, service times, as well as system param-
when needed for service, no request in any arrival sequencgiars.
will be delayed by more thal” + 7. time units.T. isthe time g paper leaves many open questions as well, for instance,
it takes to revive the system from a shutoff state to a state Whegg conditions where adaptive strategies are likely to be benefi-
it can service the request aid is the inherent wait time 0 ja| We plan to explore shutdown strategies in other embedded
on A. ) applications, including real-time operating systems (at the task
Proof of Theorem 3:Lemmas 3 and 4 prove this theo;em}evel), web servers, networked embedded systems, etc.

Thus we have constructed a new sequescdrom an ex-
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