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Abstract
Over the years, many Discriminant Analysis (DA) algorithms have been proposed for the study of
high-dimensional data in a large variety of problems. Each of these algorithms is tuned to a spe-
cific type of data distribution (that which best models the problem at hand). Unfortunately, in most
problems the form of each class pdf is a priori unknown, and the selection of the DA algorithm that
best fits our data is done over trial-and-error. Ideally, one would like to have a single formulation
which can be used for most distribution types. This can be achieved by approximating the underly-
ing distribution of each class with a mixture of Gaussians. In this approach, the major problem to
be addressed is that of determining the optimal number of Gaussians per class; i.e., the number of
subclasses. In this paper, two criteria able to find the most convenient division of each class into
a set of subclasses are derived. Extensive experimental results are shown using five databases.
Comparisons are given against Linear Discriminant Analysis (LDA), Direct LDA (DLDA), Het-
eroscedastic LDA (HLDA), Nonparametric DA (NDA) and Kernel-based LDA (K-LDA). We show
that our method is always the best or comparable to the best.

Index terms: feature extraction, discriminant analysis, pattern recognition, classification, eigen-
value decomposition, stability criterion, mixture of Gaussians

1 Introduction
Feature extraction via Discriminant Analysis (DA) is one of the most sought after approaches
in applications in computer vision [9, 24, 7, 3, 19]. The main advantage of these algorithms is
that they can automatically extract a low-dimensional feature representation where the data can
be easily separated according to their class labels [8, 23, 9, 22]. Unfortunately, to date, these
techniques have only found success in a limited number of applications. Usually, one technique
will work on some problems, while distinct algorithms will be preferred in others. And, there still
exist problems for which no DA method will successfully find an adequate representation of the
data [22, 20].�
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The reason why each algorithm is only applicable to a limited number of applications is mainly
due to the assumptions embedded in each of the methods. For example, the well-known Linear Dis-
criminant Analysis (LDA) algorithm assumes the sample vectors of each class are generated from
underlying multivariate Normal distributions of common covariance matrix but different means
(i.e., homoscedastic data) [8, 23, 9]. This assumption has restricted the use of LDA consider-
ably. Over the years, authors have defined several extensions to the basic formulation of LDA
[9, 11, 10, 2, 16]. One such method is Nonparametric Discriminant Analysis (NDA) where the
Normal assumption is relaxed in one of the two metrics [9]. However, NDA still assumes the data
in each class can be grouped in a single (non-disjoined) cluster. Hence, if the data of a class is
divided into two or more clusters, NDA will not generally work. Another alternative is to use a
weighted version of LDA, such as the approximate Pairwise Accuracy Criterion (aPAC) [16] or
Penalized DA (PDA) [11]. Here, weights are introduced in the definition of the metrics to reduce
(or penalized) the role of the least stable samples (or features). Such weights allow us to slightly
deviate from the Normal assumption, by making the metrics of DA a bit more flexible. These
methods generally outperform LDA in practise, because the data is not usually Gaussian. How-
ever, these algorithms also assume each class is represented by a single cluster and, therefore, none
of the methods defined in this paragraph can solve the problem posed by non-linearly separable
classes. Fig. 1 shows an example. In this example, none of the methods described above would be
able to find that one dimensional feature vector which minimizes the Bayes error.

To solve this, we could use non-linear methods. Flexible Discriminant Analysis (FDA) [10]
attempts to include the idea of non-linear fitting in DA. To do that, FDA reformulates the DA
problem as a regression one and, then, uses a non-linear function (e.g., such as a polynomial of
order larger than two) to fit the data. Alternatively, we could search for a non-linear function that
maps the data into a space of higher dimensionality where the classes are linearly separable. This
is the well-known idea behind the use of kernels. Generalized Discriminant Analysis (GDA) [2] is
one such method. In GDA a kernel is first used to embed the data into a space where the data is
(hopefully) linearly separable and, then, LDA is used to search for those features that best divide
the classes. Unfortunately, three main problems prevent the efficient use of such techniques. The
first one is that of finding the appropriate kernel for each particular problem (i.e., for each set of
data distributions). The second problem posed by non-linear approaches (such as the kernel trick
and FDA) is that one generally requires of a very large number of samples to successfully apply
those algorithms. And, third, non-linear methods usually have an associated high computational
cost, both in training and testing.

Our goal is to propose an algorithm that can adapt to the data at hand. This means we need to
find a way to describe a large number of data distributions, regardless of whether these correspond
to compact sets or not. One way to do this, is to approximate the underlying distribution of each
class as a mixture of Gaussians. Such mixtures are flexible enough to represent a large number of
those distributions typically encountered in real applications [21, 13]. For example, in our Fig. 1,
this means we will need one Gaussian to successfully describe the distribution of the first class,
and two Gaussians to represent the data of the second. Once the data distribution of each class
has been approximated using a mixture of Gaussians, it is easy to use the following generalized
eigenvalue decomposition equation to find those discriminant vectors that best (linearly) classify
the data, �����
	��
�������

(1)
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Figure 1: In this example, the first class is represented by a single Gaussian distribution, while the second
is represented by two separated Gaussians. Linear DA algorithms will not be able to successfully reduce
the dimensionality of the original feature space to one, because the second class corresponds to two disjoint
distributions. One can solve this problem by dividing the second class into two subclasses. Here � �

and� �
represent the sample covariance matrix and the between-subclass scatter matrix (see text).

where
���

is the between-subclass scatter matrix,
���

is the covariance matrix of the data,
�

is
a matrix whose columns correspond to the discriminant vectors, and

�
is a diagonal matrix of

corresponding eigenvalues. Since
���

measures the scatter of the subclass means, we will refer to
this method as Subclass Discriminant Analysis (SDA).

It is important to note that the difficulty in Eq. (1) is not given by the way we compute the
discriminant vectors. The real challenge (and our goal) is to find that division of the classes into a
set of subclasses so that the classification in the reduced space of

���
(where

���
is a ����� matrix

which maps the original space of � dimensions to one of � , for some ����� ) is maximized.
This paper defines simple criteria that can be used to determine those subclass divisions that

optimize classification when used in a linear discriminant setting such as that defined in Eq. (1).
In particular, we present two criteria. Our first solution uses the leave-one-out test to find the
optimal division. Here, the samples left out are used to determine that subdivision which works
best. Although this is a reasonably good approach, it comes with an associated high computational
cost. To solve this problem, we will introduce a second method which takes advantage of the fact
that Eq. (1) is not guaranteed to work when the smallest angle between the � �"! eigenvector given
by the metric to be maximized and the first � eigenvectors given by the metric to be minimized
is close to zero [20]. We will show how we can use this known fact to define a fast, easy to use
criterion.

Note that our approach (defined in the preceding paragraphs) differs from previous algorithms
where the EM (Expectation-Maximization) algorithm [5] is first used to estimate the true underly-
ing distribution of each class, before using LDA [26, 12, 19]. Our goal is to optimize classification,
not to recover the true underlying (but unknown) distribution of the data. Moreover, the methods
presented in [26, 12, 19] can only be applied when the number of samples is very large. Otherwise,
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one cannot efficiently use the EM algorithm to fit a mixture of Gaussian distributions.
In Section 2, we show that SDA can successfully resolve all the problems addressed by the

other methods reported in the literature thus far. In this section, we will also justify our definition
of

���
. Section 3 defines the two criteria used to determine the optimal number of subclasses.

Experimental results are in Section 4. We conclude in Section 5.

2 The Metrics of Discriminant Analysis
Most DA algorithms defined thus far are based on Fisher-Rao’s criterion [8, 23], which is given by# $&%(')$�## $ %(* $�# � (2)

where the matrices
'

and
*

, are assumed to be symmetric and positive-definite, so that they
define a metric. It is well-known that LDA uses the between- and within-class scatter matrices,' 	,+&�

and
* 	,+&-

resp., in Eq. (2); where
+.�/	10�23"465&798 3;: 8.<�798 3;: 8.< % , = is the number

of classes, 8 3 the sample mean of class � , 8 the global mean (including the samples of all classes),+&->	 5? 0 23"465 0 ?A@BC465D7FE 3 BG: 8 3 <H7FE 3 BG: 8 3 < % , E 3 B is the IJ�"! sample of class � , and K 3 the number of sam-
ples in that class. In the section above, we have introduced several extensions to the classical LDA
algorithm as defined by Fisher and Rao. Such modifications usually re-define one of these two
metrics,

'
or

*
. For example, NDA uses the following non-parametric version of the between-

class scatter matrix for
'

, L �M	 5? 2N 3"465 ?A@N BC465
2N O PJQO"RP @GS T3 B�UWV 3 B�:YX T3 B[Z�UWV 3 B�:YX T3 B[Z % ; where X T3 B is the

mean of the \ nearest samples to E 3 B belonging to class ] 7 ](^	 � < and S T3 B is any scale factor which
prevents the results to be affected by isolated samples located far from the boundary. Other DA al-
gorithms also rework the definition of the between-class scatter matrix. aPAC is such an algorithm
where the new scatter matrix is a weighted version of

+_�
; i.e.,

0�26` 53"465 0�2BC4a3"b65Gcd7fe 3 B < + 3 B , where+ 3 B 	 798 3;: 8 B <&798 3;: 8 B < % , e 3 B is the Mahalanobis distance between classes � and I , and c(7agh< is
a weight function which makes the contribution of each class pair be equal to the classification
accuracy (one minus the Bayes error) between these two classes up to an additive constant. Other
methods modify the definition of

*
. For instance, PDA includes a penalizing matrix i in the def-

inition of the within-class scatter matrix,
* 	j+_-lk i . Here, i penalizes those eigenvectors of

Eq. (2) that are noisy (e.g., by assigning weights that are proportional to the second derivative over
the components in each eigenvector).

Each of these methods solves a specific problem where LDA is known to fail. And, therefore,
each method will be best when applied to a specific problem. Earlier, we mentioned how SDA can
be used to efficiently solve all the problems addressed by each of the methods just defined. For
example, SDA can represent each class as a mixture of Gaussians to solve the problem targeted by
NDA. And, as illustrated in Fig. 1, SDA can also be used to classify non-linearly separable classes
if one divides each class into a set of disjoint clusters.

Another problem that was not discussed above but is common to most DA methods, is given
by the deficiency in the rank of

'
. For example, the monGK&\ 7 +.p < �q= :sr and, therefore, LDA,

PDA, aPAC and other DA methods can only extract = :,r features from the original feature
space. Shall the classes be linearly separable in the original space, = :tr features would guarantee
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Figure 2: (a) Shows a two-class example where the data is embedded in a three-dimensional space. A
two-dimensional representation suffices to optimally discriminate between the samples of the two classes.
(b) LDA cannot find such a two-dimensional solution, because the rank of u �

is one. Here, the horizontal
axis corresponds to the 1-dimensional space found by LDA. For easy view, the data has also been uniformly
distributed about the vertical axis. (c) SDA can recover this two-dimensional discriminant subspace by
dividing each of the classes into two subclasses.

to be sufficient to discriminate the = classes (assuming that the data distributions are correctly
represented by our metrics

'
and

*
) [9]. In practice, however, the data is rarely linearly separable

and the = :vr features obtained are consequently not the optimal ones. To address this problem,
some researchers have defined alternative metrics that can be used to extract more than = :wr
features. This can then be used to define a subspace of larger dimensionality where the data is
separable.

An example of this is shown in Fig. 2(a). In this example, LDA cannot recover the two-
dimensional space necessary to successfully discriminate both classes, because monGK&\ 7 +x� < 	 r ;
Fig. 2(b). This problem can be solved by defining a metric for

'
that not only considers the differ-

ence between class means but also between their covariances. Heteroscedastic LDA [17] (HLDA)
is such a method, where the authors use the Chernoff distance to estimate class similarity based on
both means and covariances; i.e.,

'
is redefined as+ 2 	 26` 5N 3"465

2NBC4a3"b65 y � ` 5Wz|{3 B 798 3;: 8 B <H798 3;: 8 B < % � ` 5Wz|{3 B k~}������J��� 3 B�: r� ���J��� 3;: r� ���J��� BD��� �
(3)

where
� 3 is the covariance matrix of the samples in class � , � 3 B the average between

� 3 and
� B ,

and we have assumed equal priors. This algorithm can now be used to find the two-dimensional
subspace where the classes are linearly separable.

Note, however, that by dividing the data of each class into a set of subclasses, we can also define
scatter matrices whose ranks are (in general) larger than = :Mr . For instance, following the most
traditional definition of a scatter matrix in LDA [8, 23, 9], one could define the between-subclass
scatter matrix as [31], ����d	 2N 3"465Y� @N BC465 � 3 B 798 3 B
: 8.<H798 3 B
: 8.< % �

(4)

where � 3 is the number of subclass divisions in class � , and � 3 B and 8 3 B are the prior and mean of
the IJ�"! subclass in class � . Such a definition is consistent with the theory of DA. Indeed, further
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analysis shows that Eq. (4) works similarly to LDA in that it simultaneously attempts to maximize
the distance between the class means and between the subclass means in the same class. This is
formally summarized in the following result.

Result 1. The covariance matrix of the subclass means

����
can be decomposed as

����d	s+&��k��
with

�j	 0 23"465 ?A@? � 3 , and where
� 3 measure the distance between the means of the subclasses in

the same class only; i.e.,
� 3 	 0

� @BC465 ?A@ �?A@ 798 3 B�: 8 3 <H798 3 B�: 8 3 < % , and K 3 B is the number of samples in
the IJ�"! subclass of class � .

This result (the proof of which is in Appendix A) shows that when we use Eq. (4) in Eq. (1),
we will find those basis vectors that maximize the distance between both, the class means and the
means of the subclasses that correspond to the same class. Shall we have the correct division of
classes into their optimal number of subclasses, this definition will work well. To see this, note
that the classes only need to be divided into subclasses when these also correspond to distinct
clusters in the reduced space. An example of this was illustrated in Fig. 1. In practise, however,
the data may sometimes be over-segmented into too many subclasses. This may be due to complex
nonlinear distributions, outliers or other factors. When this happens, it is convenient to define a���

that favors the separability of those subclasses that correspond to different classes. Formally,���d	 26` 5N 3"465Y� @N BC465
2N� 4a3"b65 ���N T 465 � 3 B � ��T 798 3 B�: 8 ��T <H798 3 B�: 8 ��T < % �

(5)

where � 3 B 	 ?A@ �? is the prior of the IG�"! subclass of class � .
The advantage of this new definition of between-subclass scatter is that it emphasizes the role

of class separability over that of intra-subclass scatter. However, it is important to note that the
information of the latter is not lost. Knowing the distances from a distribution � 5 to two others,� { and ��� , also provides information on the distance between � { and ��� . Therefore, although
indirectly, Eq. (5) also measures the distance between the subclasses in the same class. This means
that if some subclasses (belonging to the same class) need to be separated, these will (because the
required information has not been lost). However, since Eq. (5) favors class separability, only
those subclasses that are essential to boost the classification result will actually be separated in the
reduced space.

We also note that Eq. (5) is equal to
+_�

when � 3 	 r for all � 	w� r �A�A�A�H� =�� . And, since it can
be readily shown that the monGK&\ 7 ��� < �l����  7 � :Mr � � < (where � 	 0 23"465 � 3 is the total number
of subclass divisions and � is the dimensionality of the range of the covariance matrix), SDA can
also solve the problem posed by the deficiency of the rank of

+��
. An example of this is shown in

Fig. 2. In this example, the range of
���

is three, � 	s¡
, the number of classes is two, = 	 �

, and
the number of samples K 	 r£¢J¢ . When using SDA we can vary the value of � from a low of

�
to a high of r£¢J¢ , which produces a set of solutions with r �¤monGK&\ 7 ��� < � ¡

. One such solution,
for � 	>}

is shown in Fig. 2(c), in which case the result is optimal. Therefore, as stated earlier,
the goal is now reduced to finding a way to automatically select the optimal number of subclass
divisions.

6



3 Optimal Subclass Divisions
The most convenient criterion to use for the selection of the optimal number of subclasses is the
leave-one-out-test (LOOT). In this case, we use all but one sample for training ( K :¥r samples) and
then test whether our results generalize to the sample left out. Although convenient, this solution is
computationally expensive. In this section, we will show that we can also use a recent result which
shows that the basis vectors obtained by any generalized eigenvalue decomposition equation are
not guaranteed to be correct when the smallest angle between the � �"! eigenvector given by the
metric to be maximized (i.e.,

'
) and the first � eigenvectors given by the metric to be minimized

(
*

) is close to zero. We will conclude this section with a discussion on how to cluster the data into
the set of possible subclass divisions we want to analyze with our criteria.

3.1 Leave-one-out-test criterion
For each possible value of � (i.e., number of subclasses), we work as follows. We first divide the
data into � subclasses and then calculate the projection matrix

���
from Eq. (1) using all but the�f�"! sample of the training data, ¦ 3 	¤� E 5 �A�A�A�H� E 3 ` 5 � E 3"b65 �A�A�A�D� E ? � . The sample left-out, E 3 , is used

for testing. This means we will need to repeat this procedure K times – one for each of the samples
we can leave out.

Now, we let m 3�§ �
	 r if we correctly classify E 3 when we use ¦ 3 for training. Otherwise, we letm 3�§ �

	 ¢ . The recognition rate for a fixed value of � is then given by¨
�

	 rK ?N 3"465 m 3�§ �
�

The optimal value of � , �ª© , is ��© 	 nGm�«­¬�n V
�

¨
�

�
(6)

This allows us to compute the optimal
���

with ��© . The resulting projection matrix
�d®�

is a �¯�¯�
matrix whose columns are the eigenvectors associated to the � largest eigenvalues of Eq. (1) when� 	 ��© . This is summarized in Algorithm 1.

Since ��© is chosen according to how well our classifier generalizes to new samples, this leave-
one-out-test criterion generally gives an appropriate value for � .

3.2 Stability criterion
Our second approach is based on a stability criterion which we have recently introduced in [20]. In particular,
we showed that the success of any linear method, such as that given in Eq. (1), does not depend on whether
the data is homoscedastic or not. We have demonstrated that the results of the linear methods based on Eq.
(2) are not guaranteed to be correct when the smallest angle between the ° �"! eigenvector of ± and the first °
eigenvectors of ² is close to zero. We will now show how we can use this result to find the optimal value of³

. This will lead to the design of a low cost algorithm that will facilitate the use of SDA in a larger number
of applications.

To understand the reason why an algorithm that is based on a generalized eigenvalue decomposition
equation (such as Eq. (1)) may not produce the most desirable result, we need to go back to the Fisher-Rao
criterion given in Eq. (2). Note that in this equation, we want to simultaneously maximize the measure given

7



Algorithm 1 ´¶µ¸· T ©|© �
Initialization: � �

	 ¢ , ¹�� .
for � 	 r to K do

Generate the training set ¦ 3 	>� E 5 �A�A�A�H� E 3 ` 5 � E 3"b65 �A�A�A�H� E ? � using the NN clustering defined
in Algorithm 3.
Calculate

�
�
using ¦ 3 .

for � 	 = to º g =M» do
Calculate

���
using Eq. (5).

Perform the eigenvalue decomposition
� ` 5� �����
	¼���
�

.
Project the data onto the subspaces of

���
; i.e., ½ 3 	)� %� ¦ 3 .

if the sample E 3 is classified correctly then� �
k¾k

end if
end for

end for��© 	 nGm�«­¬�n V
�

� � .

Calculate
���

and
�
�

using all our training data and �ª© .
The final projection matrix

�d®�
is given by the first � columns of

�
, where

� ` 5� �����
	)���
�
.» The value of º can be specified by the user or be set so as to guarantee that the minimum

number of samples per subclass is sufficiently large.

by the scatter matrix ± (which in our case is � �
) and minimize that computed by ² (in our case, ²M¿~� �

).
Unfortunately, there may be some cases where this cannot be accomplished in parallel. This problem is
illustrated in Fig. 3. In this example, À 3 ( Á 3 resp.) is the eigenvector of � �

( � �
resp.) associated to the° �"! largest eigenvalue. In Fig. 3(a), we show an example where Eq. (1) fails. This is so, because, in this

particular case, it is not possible to maximize � �
and minimize � �

simultaneously. As seen in the figure,
one would want to select À { as a solution to minimize � �

but Á 5 to maximize � �
. Since it is impossible to

solve this, Eq. (1) will choose that direction Â 5 associated to the largest relative variance as given by Eq. (2).
In our Fig. 3(a), this means that we will select À { as our solution, which leads to an incorrect classification.

Fortunately, this problem can be easily detected because when this happens the angle between the first
eigenvectors of � �

and � �
is small (e.g., in Fig. 3(a) it is zero). This can be formally computed as [20],Ã ¿ÅÄÆ 3"465 3ÆBC465_Ç À %B Á 3FÈ {(É

(7)

where Ê,ËdÌ£ÍÏÎ6ÐÒÑ9� �.Ó
. As argued above and as shown in Fig. 3, one wants the value of

Ã
defined above to

be as small as possible. For example, in Fig. 3(b) we illustrate a case where the cosine of the angle betweenÁ 5 and À 5 is zero and, therefore, the result Â 5 is correct. This is so, because now the first eigenvector of � �
and the last of � �

agree; i.e., Á 5 ¿YÀ { . That is to say, one would always want the ideal case, where the two
metrics (that to be maximized and that to be minimized) agree. To achieve this, we can define a method that
divides each class into that number of subclasses which minimizes Eq. (7).

To efficiently use this criterion, we will need to compute the value of Eq. (7) for each of the possible
values of

³
and then select the minimum. This means we will first calculateÃ

� ¿ ÄÆ 3"465 3ÆBC465_Ç À %B Á � § 3 È { É
(8)
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Figure 3: (a) In this example, the first basis vector obtained with Eq. (1) does not minimize the classification
error. Note that À 5 (which is orthogonal to Â 5 would be the optimal and desirable solution). Close analysis
of this figure shows that the angle between the first eigenvector of � �

and � �
is zero. This means that it is

not possible to maximize the metric given by � �
and minimize that of � �

simultaneously. (b) A classical
example where most linear equations perform as expected. Note that in this case the angle between the first
eigenvectors of � �

and � �
is large (i.e., ÔAÕ © ). This is formally computed by Eq. (7).

where Á � § 3 is the ° �"! eigenvector of � �
when the data is divided by a total of

³
subclasses. The problem

of selecting
³

now reduces to finding that
³ © which minimizes Eq. (8).

It is important to note that the larger the value of
³

, the larger the number of eigenvectors in � �
(or,

equivalently, the larger Ê can be). Unfortunately, when this happens, the number of summations in Eq. (8)
increases. This means that

Ã
� will generally grow with Ê . This calls for a normalization step.

From elementary geometry we know thatÖÆBC465 Ç À %B Á � § 3FÈ { ¿ Ç9×�Ø�Ù {�Ú 3�§ 5�Û ×�Ø�Ù {ÒÚ 3�§ {.ÛÝÜhÜhÜ£Û ×�Ø�Ù {ÒÚ 3�§ Ö È ¿�Þ É
where

Ú 3�§ B is the angle between À B and Á � § 3 and ß�¿)Ì£ÍÏÎ6ÐÒÑ9� ��Ó
. In other words, the inner summation in

(8) is always guaranteed to be bounded by zero and one, à 3BC465xá À %B Á � § 3ãâ {�äæå Õ É ÞCç .
The above argument shows that Eq. (8) depends on the value of Ê . The larger Ê is, the larger Eq. (8)

can be. To prevent our algorithm to be biased toward small values of
³

, we need to normalize Eq. (8) withÞDèDÊ . Our optimal number of classes is therefore given by³ © ¿�éAêìë�íïî"ð�
ÞÊ Ã

��ñ (9)

This second criterion is summarized in Algorithm 2. We see that the complexity of this algorithm is of the
order of Î { ß Û�ò ß � , while that of our LOOT-based SDA had a complexity larger than Î � ß Û¸ó ÎJß � (recall thatÎ is the number of sample and ß is the dimensionality of the range of � �

). Note that regardless of the values
of ó and ò , the complexity of SDA using the stability criterion is much smaller than that of the leave-one-out
test. This complexity can still be further constrained by the clustering algorithm used to separate the classes
into subclasses. This is to be defined next.
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Algorithm 2 ´¶µ¸·õôföì÷WøhùWúûù9ö ü
Sort the training samples using the NN clustering defined in Algorithm 3.
Calculate

�
�
.

Calculate
�
�þýv	sý��
�

.
for � 	 = to ] g =M» do

Calculate
���

.
Compute

����ÿ 	vÿ����
.

Calculate
�

� using Eq. (8).
end for��© 	 nGm�«­¬��WK

�
�

�Calculate
���

with � 	 ��© .
The final projection matrix

�d®�
is given by the first � columns of

�
, where

� ` 5� �����¤	��ï�
�
.» Again, the value of ] can be specified by the user or be set so as to guarantee that the minimum

number of samples per subclass is sufficiently large.

3.3 Dividing classes into subclasses
Thus far, we have defined two criteria that can be used to determine the optimal number of subclass divisions.
We now turn to another related problem – that of deciding how to divide each class into a set of possible
subclasses. For computational reasons, it is quite obvious that we cannot test every possible division of Î
samples into

³
subclasses for every possible value of

³
. However, when these subclasses are assumed to

be Gaussian, their samples will cluster together. This is easy to prove from the known fact that Gaussian
distributions are convex.

This means we can use a clustering approach to divide the samples in each class into a set of subclasses
(i.e., clusters). And although the number of clustering methods available is very large, we want one that
can efficiently work when the number of samples in each class is either large or small. This means that the
K-means algorithm or the estimation of a Gaussian mixture are not adequate, because such methods do not
work properly when the number of samples is small. When this happens, one is usually left to use non-
parametric methods such as those based on the Nearest Neighbor (NN) rule [6]. In this section, we define
a NN-based algorithm to be used as clustering method in SDA. We will nonetheless compare our results
to those obtained with K-means and Gaussian mixtures. We will see that the classification results obtained
when one uses our NN-clustering algorithm are always superior or equivalent to the ones obtained when we
use the K-means or the mixture of Gaussians instead.

The reader may have already noticed that our clustering method is non-parametric, whereas the other two
algorithms mentioned above (K-means and Gaussian mixture) are parametric. Hence, we will also compare
our results to those obtained with the non-parametric clustering (valley-seeking) algorithm of Koontz and
Fukunaga [9]. In this case, we will show that the classification results obtained with our method and that of
Koontz and Fukunaga are equivalent. However, our method presents two important advantages. Þ�� � ) While
in the clustering approach of Koontz and Fukunaga one needs to optimized a parameter (which controls the
size of the local area where computations are carried out), our method is parameter-free. � ?	� ) The algorithm
of Koontz and Fukunaga is iterative in nature and, therefore, associated with a large computational cost and
is not guaranteed to converge.
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Figure 4: (a) Shown here are the two original Gaussian distributions of the data as given by the mean and
covariance matrix of the samples in each of the two classes. (b) Each class is now described using two Gaus-
sian distributions. These have been estimated using the NN-based approach summarized in Algorithm.3.

NN clustering

Our clustering algorithm (Nearest Neighbor-based) first sorts the vectors in class ° so that the set 
�� 3�5 É ñhñhñ
É � 3 ?A@�


is constructed as follows. � 3�5 and � 3 ?A@ are the two most distant feature vectors of class ° ; i.e., the Euclidean
distance between these two vectors is the largest, ÍÏÌ��ÏÊªÍ�� B ��� � 3 B�� � 3 ���û{ , where � � �C{ is the norm-2 length
of � . � 3 { is the closest feature vector to � 3�5 ; and � 3�� ?�� ` 5�� is the closest to � 3 ?�� . In general, � 3 B is the � � Þ �"!
feature vector closest to � 3�5 , and � 3�� ?�� ` B�� is the � �"! closest to � 3 ?�� .

We can now readily use this sorted set 
�� 3�5 É ñhñhñ
É � 3 ?A@�
 to divide the data in each class into

³ 3 sub-
classes. For example, we can divide the data into two equally balanced (in the sense of having the same
number of samples) clusters (

³ 3 ¿�� ) by simply partitioning this set into two parts 
�� 3�5 É ñhñhñ
É � 3� ?A@ z|{�! 
 and
�� 3��� ?A@ z|{�!|b65�� É ñhñhñ

É � 3 ?A@�
 . Or, generally, we can divide each class into " (equally balanced) subclasses; i.e.,³ 3 ¿#" , $a° . This is suitable for those cases where i) the underlying distribution of each of the classes is
not Gaussian, but can be represented as a combination of two or more Gaussians, or ii) the classes are not
separable, but the subclasses are.

Fig. 4 shows an example. In Fig. 4(a) we show the original clustering given by the labels associated
to each of the samples. Then, after sorting the data with the algorithm just described (and summarized in
Algorithm 3) and dividing the data in each class into two clusters (i.e., Gaussians), we obtain the result
shown in Fig. 4(b).

In our method, we have assumed that every class is divided by the same number of subclasses " at
each given time. Although this may seem simplistic, it is based on the fact that we can use two Gaussian
distributions to represent the data generated by a single Gaussian (but not vice versa). Moreover, recall that
we already took care of the problems caused by over-segmentation when we defined � �

in Section 2. Our
definition ensures that between sub-class scatter is only used when needed.
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Algorithm 3 NN clustering
for °&¿�Þ to % do

Let &' 3 ¿�
 &� 3�5 É ÜhÜhÜ É &� 3 ?A@�
 be the samples in class ° .
Construct the matrix ( ¿)
+* 3 B 
 where * 3 B is the Euclidean distance between samples ° and � ; i.e.,* B � ¿ � &� 3 B,� &� 3 ���û{ .
Let � 3�5 ¿ &� 3 � and � 3 ?A@ ¿ &� 3.- , where

å / É10 ç�¿�ÍÏÌ��ÏÊªÍ��Bì§ � * B � .

for �ï¿�Þ to 2 Î 3 è	��3 » do
Let � 354Cb65 ¿ &� 3 Ä , where Êw¿�ÍÏÌ��ÏÊ�°9ÎB	64 � * � B .* � Ä ¿87 .
Let � 3 ?A@ ` 4 ¿ &� 3 � , where Ðï¿�ÍÏÌ��ÏÊ�°9ÎB	649- * -"B .

* - � ¿87 .
end for
Divide the resulting sorted set 
�� 3�5 É ñhñhñ

É � 3 ?A@�
 into
³ 3 subclasses. In doing this, try to keep the same

number of samples in each subclass.
end for» For the case where Ê;:	*aÑ�Î 3 è	� Ó=<¿ Õ , there will be a sample left to be sorted. This will obviously
correspond to � 3�§> ?A@ z|{�!|b65 .

4 Experimental Results
DA algorithms have been applied to a large variety of problems – especially in computer vision. In this
section, we will first show results on three datasets of the UCI repository available at [1]. Moreover, we will
show how our algorithm applies to two particular problems in computer vision: a) categorization of images
of objects, and b) face recognition. We will compare our results to LDA [23, 8], Direct LDA (DLDA)
[28], Nonparametric DA (NDA) [9], Heteroscedastic LDA (HLDA) [17], Kernel LDA (K-LDA) [2, 27] and
Complete Kernel Fisher Discriminant analysis (CKFD) [25]. In K-LDA, we have used a second degree
polynomial kernel, ÐÒÑ�� É@? Ó ¿ Ñ�� É@? Ó {

, which we will refer to as the KP-LDA method, and a Gaussian
kernel, ÐÒÑ�� É@? Ó ¿BADCFE áHGJI `�K GMLN â , that we named KG-LDA. Note that in KG-LDA we need to specify the
value of O . This value will be optimized for each of the datasets by means of the cross-validation procedure.
The polynomial kernel used in CKFD is ÐÒÑ�� É@? Ó ¿ Ç � % ? Û Þ È�P where Í is now estimated through cross-
validation. We refer to this method as P-CKFD. Similarly, the Gaussian kernel defined above is used to
construct G-CKFD.

We also note that both, NDA and HLDA, have a free parameter to be specified by the user. In NDA, this
is the number of

Ã
nearest neighbors. In HLDA, it is the number of dimensions of the reduced space. Since

the results vary depending on the value of such parameters, we have decided to calculate the results of NDA
and HLDA for a typical range of values and then report on the mean and standard deviation of these. For
the NDA case, this means we will vary

Ã
from a low of Q to maximum of ÎSR � Þ , where ÎTR�¿~íïî"ð 3 Î 3 andÎ 3 is the number of samples in class ° . In HLDA, we vary the number of dimensions from a low of % � Þ

(which is the value used by LDA) to the íïî"ðU
	% ÛWV Õ É ß � Þ 
 .
4.1 UCI datasets
The first of the databases used was the “Wisconsin Diagnostic Breast Cancer” (WDBC) set. In this database,
we have thirty parameters defining the shape and texture of the nucleus of the cells to be analyzed. The task
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Table 1: Results on the UCI datasets.

Database X Method LDA NDA HLDA DLDA KP-LDA KG-LDA P-CKFD G-CKFD Y�Z\[H]_^ `@a @ O @ ^5b Y�Z\[
O
cdc ^

WDBC 0.94 0.73 (0.08) 0.95 (0.009) 0.87 0.80 0.95 0.94 0.90 0.94 0.94
LSD 0.84 0.48 (0.11) 0.88 (0.011) 0.86 0.85 0.91 0.85 0.88 0.88 0.87

MDD-pix 0.93 0.84 (0.13) 0.82 (0.064) 0.95 0.97 0.98 0.98 0.98 0.96 0.96
MDD-fou 0.81 0.70 (0.10) 0.83 (0.008) 0.80 0.82 0.85 0.85 0.77 0.83 0.81
MDD-fac 0.97 0.79 (0.20) 0.96 (0.006) 0.91 0.96 0.97 0.98 0.98 0.96 0.96
MDD-kar 0.96 0.90 (0.08) 0.97 (0.006) 0.96 0.99 0.99 0.98 0.98 0.97 0.97
MDD-zer 0.79 0.69 (0.08) 0.79 (0.004) 0.79 0.81 0.83 0.82 0.83 0.79 0.81

Shown here are the classification results (in percentage) obtained using the nearest neighbor rule in the
reduced spaces given by each of the methods. Results for NDA and HLDA are obtained by averaging over a
large set of possible parameters. Values shown in prentices correspond to the standard deviation from such
means.

is to discriminate between benign and malignant cells. The 569 samples available are randomly divided
into a training set 285 samples and a testing set of 284 testing instances. This guarantees that the sample-
to-dimension ratio is appropriate. The discriminant methods mentioned above are first used to find a low-
dimensional representation of the data and, then, the nearest neighbor algorithm is used to classify each of
the testing samples according to the class label of the closest training vector. These results are summarized
in Table 1. The results shown for NDA and HLDA correspond to the average and standard deviation (which
is in parentheses) over the range of values of their parameters as described above.

The second dataset used from the UCI database was the “Landset Satellite Data” (LSD). In this case, the
data is already divided into a training set of 4435 samples and a testing set of 2000 instances. Each sample is
a feature vector of 36 dimensions which define the spectral information of the sensors located in a satellite.
Here, the goal is to classify the data into six different land types. The results are also summarized in Table1.

The final test shown in Table 1 was obtained using the “Multi-feature Digit Dataset” (MDD). In MDD,
the task is to classify each of the images of handwritten digits into one of the 10 possible classes. These
digits can be represented using a variety of feature sets. The first one, referred to as “MDD-fou,” represents
the digits using 76 of the Fourier coefficients of the image. The second, “MDD-fac,” uses a set of 216 profile
correlations to describe each of the images. The third, “MDD-kar,” is based on a PCA representation of the
image pixels. The fourth, “MDD-pix,” uses the averages of a window of two by three pixels scanned over
all the possible image locations, which generates feature vectors of � V Õ dimensions. And, fifth, Zernike
moments are used to obtained a feature representation of V�e dimensions – referred to as “MDD-zer.”

We see that the results produced by the two criteria for SDA defined in this paper are equivalent. Further-
more, these are among the best. In particular, KG-LDA is probably the most comparable to SDA. However,
the computational time required to train and test the KG-LDA algorithm on the UCI datasets defined above,
was about one order of magnitude (or more) over that of f\gih � � P -ã3 T 3 �.j .

In Table 1, we have also shown the results obtained with CKFD (with a polynomial and a Gaussian
kernel). The reason for showing this results was that this method uses cross-validation to optimize the three
parameters of the algorithm. These parameters are: that kernel variable, the dimensionality of the reduced
space generated by the algorithm, and a fusion coefficient which task is to combine the results obtained in
the range and null spaces of u -

. Again, we see that both implementations of SDA are generally equivalent
to those of CKFD. However, the computational cost of CKFD is over an order of magnitude larger than the
complexity of f\gih � � P -ã3 T 3 �.j .

Our implementations of SDA automatically divide the data into a set of subclasses. Note that each
algorithm, f\gih � � P -ã3 T 3 �.j and f\gih T ©|© � , may divide the data differently. In Table 2 we show the number of
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Table 2: Subclasses.

Method WDBC LSD MDD-pix MDD-fou MDD-fac MDD-kar KDD-zerf\gih � � P -ã3 T 3 �.j 8 4 6 4 8 5 1f\gih T ©|© � 4 10 6 2 2 9 8
Number of subclass divisions per class obtained by each of the two implementations of SDA; i.e.,

³ © èk% .

(a)

(b)

Figure 5: (a) This figure shows an example image for each of the eight categories in the ETH-80 database
[14]. In (b) we show a sample image for each of the ten different cows in this database.

subclass divisions per class automatically obtained by each of the two criteria defined in this paper. This
table shows the value of

³ © èk% . Although each criterion may result on slightly distinct subclass divisions,
the classification accuracy does not vary too much as shown in Table 1. Recall that our goal was not to find
that division of the data which best approximates the true underlying distribution of each class. Rather, we
want to find that division which best classifies the data in the reduced space. We may hence conclude that
each criterion is able to find a division (albeit a different one) that generates good results.

4.2 Object categorization
A classical problem in computer vision is to classify a set of objects into a group of known categories (e.g.,
apples, cars, etc.). In our experiments, we have used the ETH-80 database which contains images of the
following categories: apples, pears, cars, cows, horses, dogs, tomatoes, and cups [14]. Examples of these
are shown in Fig. 5(a). Each category includes the images of ten objects (e.g., ten different cows – as shown
Fig. 5(b)) photographed at a total of 41 orientations. This gives us a total of V ÞhÕ images per category.

Feature-based classification

In this approach, we first obtain the silhouette of the object (i.e., the contour that separates the object from
the background), Fig. 6(b). Then, we compute the centroid of this silhouette and, finally, calculate the length
of equally separated lines that connect the centroid with the silhouette; see Fig. 6(c). In our experiments we
obtain a total of lAÕ£Õ distances, which generates a feature space of 300 dimensions.

14



(a) (b) (c)

Figure 6: (a) A cow seen from one of the 41 different orientations. (b) The silhouette of this cow. (c) Each
line measures the distance from the centroid to several points in the silhouette.

To test the classification accuracy of each method, we use the leave-one-object out test. This means that
we use 79 of the 80 objects for training and one for testing. Since there are obviously 80 ways in which we
can leave one object out, we repeat the test eighty times and computed the average.

These results are summarized in Fig. 7(a). Since we used the leave-one-object out for testing, the value
of

³ © varied each time. For the f\gih � � P -ã3 T 3 �.j algorithm, the average value of
³ © was e Ô , which means we

would have an average of about 42 samples per subclass. For the f\gih T ©|© � this average was �kQ .
Appearance-based classification

For comparison purposes, we have also considered the classification of the objects in the ETH-80 database
using a simple (pixel-) appearance-based approach. Here, we first crop the sub-image corresponding to
the smallest rectangle that circumscribes the silhouette of the object. Since distinct images will generate
croppings of different sizes, we resize each of the resulting sub-images to a standard size of �kQ by lAÕ pixels;
i.e., a 750-dimensional feature space. Because we have a total of l É �kl£Ô samples for training, the samples-
to-feature ratio is still adequate. Again, we use the leave-one-object out test to obtain our results, which are
summarized in Fig. 7(b). In this case, the average value of

³ © was mAÕ when we used f\gih � � P -ã3 T 3 �.j and � e
when using f\gih T ©|© � .

In the two experiments shown above, using the ETH-80 database, we see that SDA always yield the
highest recognition rate. Furthermore, SDA gives very similar results for both the feature- and appearance-
based methods. Previous results reporting the superiority of one method over the other might have been due
to the DA approach used, rather than the discriminant information contained in each feature-space.

4.3 Face recognition
In our last experiment, we used the AR-face database [18]. The AR-face database consists of frontal-view
face images of over ÞhÕ£Õ people. Each person was photographed under different lighting conditions and
distinct facial expressions, and some images have partial occlusions (sunglasses or scarf). A total of 13
images were taken in each session for a total of two sessions; i.e., 26 images per person. These sessions
were separated by an interval of two weeks.

We used the first 13 images corresponding to the first session (shown in Fig. 8(a)) of 100 randomly
selected individuals for training; i.e., Þ É lAÕ£Õ training images. The 13 images of the second session (shown
in Fig. 8(b)) were used for testing.

In this case, we first crop the face part of the image (without including hair or background) and then resize
all images to a standard image size of 29 by 21 pixels. This yields a 609-dimensional feature space. During
the cropping process we also align all faces to have a common position for the eyes and mouth (since this
is known to improve accuracy). The results are shown in Fig. 7(c). In this test both methods resulted in³ © ¿�ÞhÕ£Õ .

15



(a)

(b)

(c)

Figure 7: (a) Results of the categorization problem using the feature-based approach. (b) Results of
the categorization problem using the appearance-based approach. (c) Face recognition results using an
appearance-based approach.
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(a)

(b)

Figure 8: Facial images from AR-face database with different expressions and different occlusions.

4.4 Comparison of the results on different clustering methods
As mentioned earlier, there are many clustering algorithms that could have been used to divide the data in
each class into a set of subclasses. We now show that the classification results obtained using our NN-based
approach (defined in Section 3.3) are comparable to those obtained with the K-means and the valley-seeking
algorithms. To show this, we have rerun all our experiments described above but now using the K-means
and the valley-seeking algorithms to divide the data into subclasses. These algorithms are refereed to asf\gihon ` Ä p P ? � and f\gihrq P T T p j . The classification accuracy for each of these implementations of SDA, are
shown in Table 3. Note that while our NN-based clustering approach always generated the same partition of
the data, this is not the case for the K-means and valley-seeking algorithms. On the one hand, K-means is
an iterative approach that requires an initial guess (which is usually given at random). Different initializa-
tions result in distinct partitions. On the other hand, the valley-seeking algorithm requires that we manually
choose a window size where local computations are to be conducted. Different window sizes will produce
distinct clustering results. To make a fair comparison, we have randomly initialized the K-means ten times
and then computed the average and standard deviation (which is shown in parentheses in the table). Sim-
ilarly, the valley-seeking algorithm was run for several window sizes – average and standard deviation are
shown. Finally, the results labelled f\gihtsus in Table 3 are those obtained with our NN-clustering method
and the stability criterion derived earlier. The results of the f\gihvn ` Ä p P ? � method were also obtained using
our stability criterion. This means, we tried several values of

³
for clustering and then select the optimal

according to Eq. (9). The valley-seeking algorithm works differently. For a fixed window size, the value of³ © is automatically given by the clustering method. Therefore, there is no need for the optimization step.
Nonetheless, one may want to optimize the window size, because different sizes will result in very different
partitions. We can do this by means of the LOOT or stability criteria defined in this paper. For example, we
could define a new algorithm which uses our stability criterion to optimize the window size of the valley-
seeking method – we referred to this as f\gihtw Y of Valley-Stability (VS). The results obtained with this new
approach are summarized in Table 4. We see that this new algorithm results in similar classification rates
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Table 3: ´¶µ¸· n ` Ä p P ? � and ´¶µ¸·tq P T T p j
Method ARface ETH-80 (feature) ETH-80 (appearance) WDBC LSDf\gihosus 0.782 0.749 0.731 0.944 0.881f\gihon ` Ä p P ? � 0.776 (0) 0.754 (0.030) 0.789 (0.071) 0.942 (0.007) 0.884 (0.007)f\gihrq P T T p j 0.666 (0.150) 0.753 (0.005) 0.701 (0.025) 0.956 (0.005) 0.876 (0.004)

Method MDD-pix MDD-fou MDD-fac MDD-kar KDD-zerf\gihosus 0.957 0.834 0.957 0.966 0.793f\gihon ` Ä p P ? � 0.956 (0.004) 0.828 (0.007) 0.935 (0.029) 0.965 (0.006) 0.7947 (0.005)f\gihrq P T T p j 0.936 (0.011) 0.811 (0.011) 0.971 (0.006) 0.962 (0.005) 0.799 (0.009)
Classification results when clustering the data in each class with the K-means and the valley-seeking.

Table 4: ´¶µ¸· w Y
Method ARface ETH-80 (feature) ETH-80 (appearance) WDBC LSDf\gihow Y 0.757 0.759 0.733 0.947 0.88

method MDD-pix MDD-fou MDD-fac MDD-kar KDD-zerf\gihow Y 0.927 0.82 0.968 0.959 0.793
Successful classification rates as given by the VS (Valley-Stability) implementation of SDA.

to those of our previous methods – f\gih T ©|© � and f\gih � � P -ã3 T 3 �.j . This illustrates how the results described
in this paper can be extended or used to define novel algorithms. For example, we could use our results to
efficiently find the optimal division in the methods defined in [4, 29].

We would now like to get back to the possibility of estimating the underlying distribution of the data
using a mixture of Gaussians. Unfortunately, and as already anticipated, we were unable to obtain such
results because the EM algorithm requires to invert every sample covariance. In the databases used above, it
is only possible to calculate such inverses in the WDBC set. In this case, the result obtained using a mixture
of Gaussians (estimated with the EM algorithm) and our stability criterion was ÔkQyx which is comparable
to those reported above. This method would however be restricted to applications where the number of
samples per class is much larger than the dimensionality of the data.

As a final note, we should mention that the algorithms presented in this paper assume there is a sufficiently
large number of samples per class. Note that when the number of classes is small, these cannot be reliably
divided into subclasses. In this case, SDA will not generally divide the data into subclasses and, hence, will
be equivalent to LDA. To show this, we have run f\gih � � P -ã3 T 3 �.j using the images of the first session in the AR
face database. In this case, however, we only used four randomly chosen images for training. The remaining
nine were subsequently used for testing. This process was repeated five times. In all cases f\gih � � P -ã3 T 3 �.j was
equivalent to LDA, i.e.,

³ © ¿�ÞhÕ£Õ .

5 Conclusions
Over the years, many discriminant analysis algorithms have been proposed, each targeted to a specific type
of data distribution. Since the type of distribution is usually unknown in practice, this meant that we were left
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to test each of the existing methods before choosing that which worked best on our data. This was however
very time consuming and would not guarantee we find that algorithm that best adapts to our problem. To
remedy this, we have proposed a new method whose goal is to adapt to a large variety of data distributions.
Rather than working with complex nonlinear methods (which require a large number of training samples
to work properly and usually have a large computational cost), we have shown how we can solve this by
dividing each class into a set of subclasses. In Section 2, we have shown how such subclass divisions can
be used to adapt to different types of class distributions and how this allows us to find the most adequate
subspace representation. This lead us to define a new between-subclass scatter matrix given in Eq. (5).

The main problem that needed to be addressed next, was to define an easy-to-use criterion that could
provide a good estimate for the number of subclasses needed to represent each class pdf. In Section 3, we
defined two such criteria. Our first criterion, is based on the idea of the leave-one-sample-out estimate. Here,
the best partition is estimated using a cross-validation test on the training set. Although this was shown to
be a reasonable approach, it came to an associated high computational cost. To solve this, we introduced a
second criterion which takes advantage of the fact that any generalized eigenvalue decomposition equation
(such as that used by our method) is not guaranteed to work when the smallest angle between the ° �"! eigen-
vector given by the metric to be maximized and the first ° eigenvectors given by the metric to be minimized
is close to zero.

We have shown experimental results on several datasets from the UCI repository (each with features of
very distinct sorts) and on two computer vision applications (object categorization and face recognition).
Our results show that the two implementations of SDA yield the highest classification rates.

Appendix A
Proof of Result 1. We can rework Eq. (4) as follows,
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The first summing term can be further simplified as,2Æ 3"465 � @ÆBC465 Î 3 BÎ Ñ�� 3 B,� � 3 Ó Ñ�� 3 B,� � 3 Ó % ¿ 2Æ 3"465 � @ÆBC465 Î 3 BÎ Î 3Î 3 Ñ�� 3 B,� � 3 Ó Ñ�� 3 B,� � 3 Ó % ¿2Æ 3"465 Î 3Î � @ÆBC465 Î 3 BÎ 3 Ñ�� 3 B,� � 3 Ó Ñ�� 3 B,� � 3 Ó % ¿ 2Æ 3"465 Î 3Î�� 3 ¿ � É
where � 3 ¿/à � @BC465 ?A@ �?A@ Ñ�� 3 Br� � 3 Ó Ñ�� 3 Br� � 3 Ó % is the between-subclass scatter matrix of class ° , and � is the
average of � 3 for Þ���°u��% .

Similarly, we can simplify the second term in Eq. (10) as
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2Æ 3"465 � @ÆBC465 Î 3 BÎ Ñ�� 3H� � Ó Ñ�� 3H� � Ó % ¿ 2Æ 3"465 Î 3Î Ñ�� 39� � Ó Ñ�� 3H� � Ó % ¿/u �
ñThe third and final term in Eq. (10) is easily shown to be equal to zero,2Æ 3"465 � @ÆBC465 Î 3 BÎ Ñ�� 3 B�� � 3 Ó Ñ�� 3H� � Ó % ¿ 2Æ 3"465 � @ÆBC465 Î 3 BÎ Ñ�� 3 B � % 3 � � 3 B � % � � 3 � % 3 Û � 3 � % Ó ¿2Æ 3"465 Î 3Î � 3 � % 3 � 2Æ 3"465 Î 3Î � 3 � % � 2Æ 3"465 Î 3Î � 3 � % 3 Û 2Æ 3"465 Î 3Î � 3 � % ¿�Õ ñ

Appendix B: Notation

% Number of classesÎ Number of samplesÎ 3 Number of samples in class °Î 3 B Number of samples in the � �"! subclass of class °³ 3 Number of subclasses in class °³ ¿ à 23"465 ³ 3 Total number of subclasses³ © Optimal number of subclasses� 3 B The � �"! sample of class ° , where Þ��d°u��% and Þ���� �dÎ 3� The sample mean for all the data� 3 The sample mean for class °� 3 B The sample mean for subclass � in class °u �
Between-class scatter matrixu -
Within-class scatter matrix� �
Sample Covariance matrix� �
Between-subclass scatter matrixß Rank of � �

¡ Rank of � �¢ ¿8
[Á 5 É ñhñhñ
É Á � 
 eigenvectors of � �£ ¿�
HÀ 5 É ñhñhñ

É À Ö�
 eigenvectors of � �
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