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Microsatellite instability, one of the phenomena implicated in gastric cancer, is mainly associated with the 
expansion or contraction of microsatellite sequences due to replication errors caused most frequently by 
mutations in the mismatch repair (MMR) and tumour suppressor genes. Tumours exhibiting microsatellite 
instability are proven to have truncated products resulting from frequent mutations in mononucleotide 
or dinucleotide runs in coding and non-coding regions of the targeted genes. Epigenetic changes like 
hypermethylation of the promoter region of MMR genes as well as gene silencing are also responsible 
for the microsatellite instability phenotypes. Assessing microsatellite instability in tumours has proved 
to be an efficient tool for the prognosis of various cancers including colorectal and gastric cancers. Such 
tumours are characterized by distinct clinicopathological profiles. Biotic agents like Epstein Barr Virus 
and H. pylori along with other factors like family history, diet and geographical location also play an 
important role in the onset of gastric carcinogenesis. Instability of mitochondrial DNA has also been 
investigated and claimed to be involved in the occurrence of gastric cancers in humans. Development of 
simplified but robust and reproducible microsatellite instability based molecular tools promises efficient 
prognostic assessment of gastric tumours.
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Introduction

	 During the lifetime of an organism, various cellular 
processes work as an organisation and are responsible 
for the overall health status of the organism. Any 
deterioration or malfunctioning of these processes 
could induce aberrations in genome, transcriptome or 
proteome. Such alterations may switch-on the proto-
oncogenes and finally develop cancer. 

	 One of the leading causes of cancer associated 
deaths in the world is gastric cancer (GC), though its 
incidence has decreased in the last decade1. Prognostic 
methods applied to detect GC are poor with limited use 
and pose a major clinical limitation in detecting cancer 
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at an early stage such that less than 5 per cent people 
survive for more than five years2. In recent times, 
researchers around the world have reported various 
distinct GC specific clinicopathological profiles, 
facilitating cancer prognosis and detection. GC is now 
generally considered as the outcome of irregularities 
in complex biological processes involving many genes 
which regulate activities such as cell growth, death or 
apoptosis, DNA repair, etc. (Fig. 1). The alterations in 
gene regulation activities result from various underlying 
genetic instabilities and epigenetic changes. 

	 Once considered as junk DNA, the repetitive 
elements are now believed to have a significant role 
in the normal functioning of the cells. The presence of 



repetitive rudiments in coding and non-coding DNA 
makes them a valuable region both structurally as well 
as functionally. The repetitive DNAs are classified 
into satellites, minisatellites, and microsatellites on the 
basis of length of repeat units. Microsatellites are short 
iterations of 1-6 nucleotide long units, non-randomly 
distributed in both prokaryotic and eukaryotic genomes. 
Microsatellites are further classified into perfect, 
interrupted and compound microsatellites (Fig. 2). 
During the past decade microsatellites have emerged 
as molecular markers of choice for diverse applications 
owing to some advantages over the other marker 
systems. Microsatellites undergo mutations at a very 
high rate ranging from 10-6 to 10-2 per generation3 and 
thus, are highly polymorphic in nature. The disorders 
in the microsatellite regions like insertions, deletions, 
etc. may result in altered expression of associated genes 
finally changing the phenotype of the organism. These 
genomic alterations are named microsatellite instability 
and are now considered as markers for prognosis and 
diagnosis in many types of cancers. 

	 The genomic instability pathways mentioned in 
the literature till date are of two types: chromosomal 
instability (suppressor pathway) and microsatellite 
instability (mutator pathway)4. The former includes 
tumour suppressor gene inactivation commonly caused 
by mutation or allelic loss. Loss of heterozygosity 
(LOH) is thought to contribute to tumour suppressor 
gene inactivation and has been detected in many types 
of human tumours. Genomic locations demonstrating 
high rates of LOH represent loci that potentially 
anchor tumour suppressor genes. The alteration in the 
microsatellite DNA due to polymerase slippage results 
in microsatellite instability (MSI). Accordingly, these 

two mechanisms are related to different GC subtypes 
such as intestinal type associated with MSI and diffuse 
type linked with suppressor phenotype5,6.

	 Cancer can be diagnosed at an early stage by 
assigning MSI status to the cancerous tumour or cells. 
In last few decades, a large amount of data have been 
accumulated on various genes, mechanisms, features 
and agents responsible for causing gastric cancer. 
This review covers various factors and features of 
microsatellite instabilities- mitochondrial or nuclear, 
associated with gastric cancer. 

Origin and detection of microsatellite instability

	 Microsatellites are considered hypervariable 
and thus contribute towards species and population 
diversity. The mutation rates at microsatellite loci 
differ with regard to repeat unit length (mono, di, tri, 
etc.), microsatellite type (perfect, compound, etc.), base 
composition and taxonomic groups6,7. Microsatellite 
flanking sequences have the ability of modifying their 
genomic context as well as mutability of the locus8,9. 
The hypervariability in the microsatellite tracts 
arising due to DNA polymerase slippage following re-
alignment of nascent and template strands and if this 
alignment remains unobstructed, then repeat number 
is altered6,10. Mismatch repair (MMR) system corrects 
these alterations and reduces the error rate by 100-1000 
fold, together with DNA exonuclease proof reading 
ability11,12. Some MMR genes themselves contain 
microsatellites in the coding regions. Therefore, if the 

Fig. 1. The Mutator pathway responsible for gastric cancer. Various 
factors and genes involved are shown.

Fig. 2. Types of microsatellites and different aberrations involved 
in the incidence of cancer. MSI, microsatellite instability.
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MMR gene itself gets mutated, then the repair of the 
mutated region elsewhere in the genome is hampered. 
Moreover, the incidence of carcinogenesis increases 
with the increase in mutation rates in the MMR genes.

	 Different methods have been employed to study 
the prevalence of MSI in GC over the last decade. 
Polymerase chain reaction (PCR) is the most common 
technique used in the prognosis of MSI and classifying 
tumours on the basis of MSI status. PCR amplification 
has been used to study expression analysis of MSI by 
comparing PCR profiles obtained from both normal 
and cancerous tissue13. One major improvement in 
MSI detection is multiplex PCR amplification. The 
advantage of multiplex PCR over the normal single 
locus PCR is that more than one microsatellite loci 
under investigation are amplified within one reaction, 
decreasing the number of steps involved as well as 
maintenance of data in simplistic way. For obvious 
reasons, the fluorescent analysis has an upper hand 
over the radioactive detection system.

Association of MSI with cancer

	 MSI plays a very important role in the development 
of cancer14. In 1993, MSI was implicated as one of the 
factors responsible for the occurrence of colon cancer 
designated as hereditary nonpolyposis colon cancer 
(HNPCC)15. Soon after, several studies suggested the 
role of MSI in other cancers also like endometrial 
and gastric cancer16,17. In 1997, a meeting held at 
Bethesda, USA, during National Cancer Institute 
Workshop proposed a panel of five markers including 
mononucleotide (BAT26 and BAT25) and dinucleotide 
(D2S123, D5S346 and D17S230) markers for the 
uniform detection of MSI tumours18. Accordingly, the 
tumours were classified into three classes based upon 
the MSI status: tumours with instability at more than 
two loci designated as MSI-High (MSI-H), those with 
instability at two loci as MSI-Low (MSI-L), and those 
which do not show instability at any of the microsatellite 
loci as MSS tumours. Research groups have also 
classified human cancers on the basis of microsatellite 
length alterations as Type A (< 6 bp length change) and 
Type B (>8 bp length change)19. Various genes involved 
in MMR machinery are reported to undergo mutations 
as well as hypermethylation, resulting in the truncation 
of the encoded protein product of the respective gene. 
The mutations in these genes are responsible for the 
MSI phenotype resulting in cancer progression in the 
affected cell lines20,21. Furthermore, diverse populations 
of the world have different MSI prominence due to 

various other environmental factors ensuing dissimilar 
outcomes. MSI has been reported in around 5 to 50 per 
cent of sporadic GC22-24. 

Target genes and mutations involved

	 MSI is responsible for aberrations in several 
genes involved in normal functioning of the cells. 
These mutations lead to the truncation of the gene 
products and/or suppression of the gene activity. 
Over a decade, different genes have been discerned to 
undergo mutations at the repetitive sites viz. tumour 
growth factor beta receptor type II (TGF-βRII), Bcl-2 
associated X protein (BAX), hLMHI, hMSH3, hMSH2, 
hMSH6 and insulin growth factor type-II receptor 
(IGF-IIR) genes25-27,41 (Table). These mutations are not 
only confined to intronic regions of the genes but also 
appear in the coding regions. Moreover, epigenetic 
changes like hypermethylation has also been implicated 
in various studies, for example, hypermethylation of 
hMLHI, RAB32, CDH1, etc. Several targets of MSI are 
enlisted below which undergo expansion, contraction, 
point mutation and rearrangements in the microsatellite 
region.

Tumour suppressor genes

	 During 1970s and early 1980s, evidences that 
suggested the involvement of a different class of 
genes other than proto-oncogenes in cancer started 
accumulating. These genes have the property of 
suppressing the growth of abnormal cells by interfering 
with their cellular machinery. Later, these were named 
as tumour suppressor genes and alterations in these 
genes result in the altered phenotype and finally, cancer. 
The tumour suppressor genes can undergo mutations 
either by suppressor pathway or by mutator pathway. 
p53 is the most studied tumour suppressor gene that 
follows the suppressor pathway resulting in the cancer 
progression. Other genes like TGF-βRII, gene coding 
for tyrosine phosphatase, protein kinases coding gene, 
EphB2, and retinoblastoma protein-interacting zinc 
finger (RIZ) gene follow the MSI pathway42,43. These 
genes are affected due to frameshift mutations in the 
microsatellites spanning the coding region causing 
the loss of function and ultimately leading to failure 
of translation. The loss of function of TGF-βRII is 
considered to be the first step in the onset of cancer. 
Reports have shown frameshift mutations in TGF-βRII 
in 59.3 per cent of MSI-H associated GC28. Mutations 
at this locus are supposed to be the primary target for 
alteration and aberration in the normal phenotypes. 
Association of TGF-βRII with intestinal type or 



glandular structure has been reported in GC with a 
better survival rate44. During gastric tumorigenesis, 
TGF-βRII mutations play pivotal role such that GC 
progresses by escaping the growth control signal of 
TGF-βRII network45. 

	 Alterations in dual specificity phosphatase (DPTP) 
associated with MSI-H are reported to be around 12 per 
cent (1 bp deletion) and thus, contribute to development 
of cancer along with other primary mutations30. DNA-
dependent protein kinase (DNA-PKC) genes have two 
mononucleotide repeats poly(A)8 and poly(A)10, of 
which, latter exhibits frameshift mutations46,47. The 
frameshift mutations in this tract follow an expression 
loss mechanism and are found associated with lymph 
node metastasis and neutrophillic infiltration in GC48. 

	 Inactivation of APC (adenomatous polyposis coli) 
gene plays a role in the development of GC. Similar 

to that in CRC, APC gene undergoes mutations during 
the early developmental stages of GC49. Mutations of 
APC send a downstream signal resulting in further 
mutations in EphB2 gene that belongs to the family 
of receptor tyrosine kinases and has been extensively 
studied because of its emergence as a tumour suppressor 
gene in CRC43. A high incidence (39%) of EphB2 
mutation in (A)9 tract occurs in GC-MSI cases whereas 
no significant relationship with clinicopathological 
features has been reported31. EphB2 has a role in the 
developmental processes particularly in the nervous and 
vasculature system. The presence of EphB2 mutations 
in stomach mucosa results in gastrointestinal cancer50. 
While this gene is a target in mutator pathway, it is 
mutated in endometrial cancer by following a different 
tumorogenic pathway31. 

	 RIZ, a member of tumour suppressor genes, coding 
two proteins RIZ1 and RIZ2, is involved in chromatin 

Table. List of genes and their important features implicated in MSI-H gastric cancer
Targeted gene Function Microsatellite 

repeat
Frequency of 
mutation (%)

Mutation type Reference

TGFβ RII Tumour suppressor gene (A)10 59.3 Deletion 28
BAX Proapoptotic factor (G)8 25-33.3 - 28, 29
IGF-IIR Growth factor receptor (G)8 25 - 28
Protein Tyrosine 
Phosaphatase 
Gene

Dephosphorylation and 
characteristics of tumour 
suppressor gene

(A)7 or (G)7 15 Deletion or 
duplication

30

EphB2 Tumour suppresor gene (A)9 39 Frameshift 
mutation

30

RIZ Cell cycle and apoptotic protein (A)8 or (A)9 48 Deletion 32
MRE11 DNA damage repair (T)11 24.5 Deletion 33
ATR DNA damage repair (A)10 21 Deletion or 

insertion
34

RFC3 Replication factor 3 (A)10 24 Deletion 35
hMSH3 MMR (A)8 28 Deletion 36
hMSH6 MMR (C)8 28 Deletion 36
AXIN2 Wnt signalling (G)7 28.1 Deletion 37
TCF7L2 Wnt signalling (A)9 18.8 Deletion 37
E2F4 Cell cycle and acts on tumour 

suppressor genes
(CAG)13 33.3 Deletion 38

Autophagy related 
genes (UVRAG)

Autophagy (A)10 9.4 - 39

BLM Responsible for Bloom 
Syndrome

(A)9 27 Deletion 40

TGF-βRII, tumour growth factor β Receptor Type-II; BAX, Bcl-2-Associated X protein; IGF-IIR, Insulin Growth Factor Receptor 
type-II; EphB2, Ephrin Type B Receptor 2; RIZ, retinoblastoma interacting zinc finger; MRE11, meiotic recombination 11; ATR, ataxia 
telangiectasia and Rad3-related; RFC3, replication factor C3;  hMSH3, human Mut-s homolog 3; hMSH6, human Mut-S homolog 6; 
AXIN2, axis inhibition protein 2; TCF7L2, transcription factor-7 like-2; BLM Bloom Syndrome
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mediated gene activation and silencing. RIZ1 (PR+) 
product is considered as a tumour suppressor candidate 
on region 1p36, which is found deleted in most types 
of human cancers. In MSI(+) tumours, RIZ is affected 
by frequent frameshift mutations in one or two coding 
poly(A) tract, an (A)8 tract at the coding nucleotide 
sequence 4273-4280 and an (A)9 tract at 4462-4471 
in exon 832. A literature survey showed 48 per cent of 
RIZ1 mutations associated with GC, 33 per cent with 
endometrial cancer and 26 per cent with CRC32. During 
tumorigenesis, biallelic mutations of RIZ are proposed 
to be clonally selected that have a more important role 
in endometrial cancer over GC and CRC32. The RIZ 
gene is mostly affected as high as in 57 per cent of 
cases in the poly(A)9 (mostly deletion) tract in MSI-H 
tumours over MSI-L and MSS56. It can be said that RIZ 
mutations may have a role in GC in MSI-H and provide 
an important mutational target in GC as in the case of 
endometrial cancer.

	 Tumour suppressor genes are known to be involved 
in the onset of gastric cancer. Mainly the TGF-
βRII is one of the primary genes which has a direct 
consequence, as also reported in CRC. The prevalence 
of LOH in these genes is less in comparison to MSI and, 
therefore, one can suggest the involvement of mutator 
pathway. The preference for the MSI pathway may be 
the outcome of the presence of mononucleotide repeats 
in the coding sequence of these genes. Such repeats 
have a biasness to undergo mutations at a higher rate 
over other repeats and thus follow the mutator pathway 
over the suppressor pathway52.

Mismatch repair and DNA damage repair genes

	 Mismatch repair (MMR) system is known to be 
responsible for correction of any error arising during 
DNA replication. To maintain the genomic fidelity, 
the MMR system has to be efficient in correcting 
these mutations. MMR system genes like hMSH2, 
hMSH3 and hMSH6 play a pivotal role in correcting 
these errors53. Gene hMSH2 forms a heterodimer with 
hMSH3 or hMSH6 and binds with the part of DNA 
harbouring the error. Other genes which take part in 
this process are MRE-11, replication factor C3 (RFC-3) 
and checkpoint genes Ataxia telangiectasia and Rad3-
related (ATR) and CHK133-35. All these genes contain 
mononucleotide repeats that undergo alterations.

	 hMSH3, hMSH2 and hMSH6 are homologs 
of mut-s genes present in bacteria. Biallelic and 
monoallelic mutations are reported at hMSH3 and 
hMSH6 loci exhibiting MSI phenotype36. Various 

types of mutations including frameshift or indels in 
the mononucleotide repeat tracts have been observed 
in these genes resulting in either loss of function or 
low expression of the genes involved in GC. Low 
expression of hMSH2 gene was reported in moderately 
and poorly differentiated gastric cancers showing its 
metastasis and prognostic significance36. A significant 
association between MSI-H phenotype and MRE-11 
mutations (intronic) has been suggested to be a novel 
target in MSI-H GCs33. MRE-11 gene, one of the novel 
targets in GC, is involved in the progression of GC at 
later stages. 

	 Ataxia telangiectasia and Rad3-related (ATR), 
a DNA damage repair gene, is vulnerable to somatic 
mutations that normally occur in sporadic MSI positive 
GC tumours34. In association with CHK1, it induces 
cellular check in G2-M phase through the inhibition 
of Cdc25c and Cdc2 by phosphorylating these two 
proteins. The hotspot of these mutations is a short stretch 
of (A)10 repeat. Insertion or deletion of nucleotides 
generates (A)11 or (A)9 repeats consequently resulting 
in cancer phenotype. These reports suggest that ATR, 
and CHK1 are some of the direct targets of the mutator 
pathway in stomach tumorigenesis. In addition, the 
inhibitory action on the pathway of ATR-CHK1 DNA 
damage-response could result in the tumorigenesis of 
GC with MSI. 

	 RFC3 and PCNA (proliferating cell nuclear 
antigen) help in the process of proofreading of DNA. 
Recent studies have revealed the presence of (A)10 
repeat in exon 3 of RFC3 gene and an (A)7 repeat in 
exon 13 of RFC1 gene which can provide a potential 
mutation target in cancer with MSI35. Association 
between MSI-H and RFC3 mutation has been recorded 
in around 40 to 69 per cent of GC, and more frequently 
in CRC, without any significant relationship with 
clinicopathological features35. 

Wnt signalling pathway genes and transcription 
factors

	 Wnt (Wingless-int) signalling pathway is involved 
in the regulation of morphogenetic events during 
development, for example, gut development. The Wnt 
genes, TcF/Lef family transcription factors and APC 
gene work in a feedback manner. The Wnt genes bind 
to the frizzled proteins and activate Wnt signalling 
pathway. This activation inhibits APC/AXIN/GSK3β 
complex resulting in the release of β-catenin which 
finally binds to transcription factors TcF/ Lef and 
translocates into the nucleus54. Mutations in APC and 
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Wnt pathway genes [AXIN2- poly(G) and TCF7L2- poly-
(A)] have been reported in different types of cancers36. 
The Wnt genes contain exonic mononucleotide repeats 
and are supposed to be tumour suppressors as these 
are negative regulators of Wnt signalling54-56. Although 
mutations in (A)9 repeat (deletion-1bp) of TcF-4 gene 
have been implicated in 14.3 per cent of CRC cases, no 
single case of GC had mutation in this gene58. In a recent 
study, it was observed that 28.1 per cent of AXIN2 and 
18.8 per cent of TCF7L2 with frameshift mutations in 
the mononucleotide repeats were associated with the 
MSI-H cancers, and no single mutation was found in 
MSI-L/MSS cancers37. Till now, not much is known 
about how these genes mark the onset of GC and related 
clinicopathological features. Further investigations are 
required to explain the possible role of these genes in 
the incidence of GC.

Other targets of MSI

	 IGF-IIR gene belongs to the insulin growth 
receptor family and is thought to be an important 
gene in the progression of GC. The gene contains (G)8 
microsatellite similar to that in BAX gene (an apoptotic 
gene). BAX alongwith E2F4 having trinucleotide 
repeats is confirmed to have a role in carcinogenesis 
of stomach. Investigators have reported that among 
MSI-H GC, these genes exhibit frameshift mutations 
causing the loss of expression59. Around 25 to 33 per 
cent mutations in the coding mononucleotide repeat of 
IGF-IIR and BAX genes were reported in MSI-H GC28. 
E2F4 mutations were present in the early stages of 
multiple GC and exhibited deletions in the microsatellite 
region suggesting that E2F4 is a mutational target for 
MMR defects38. It can be said that all these genes in 
one or the other way follow pathway similar to mutator 
pathway instead of suppressor pathway as no significant 
relationship between LOH and the mutations in these 
genes is reported. 

	 In 1977 Birt-Hogg-Dube (BHD) syndrome was 
described as a rare form of autosomal dominantly 
inherited syndrome exhibiting characteristics like 
fibrofolliculomas, trichodiscomas and acrocordon skin 
abnormalities60. The genic region contains poly(C)8 
mononucleotide repeat in exon 11 and around 44 per 
cent of BHD patients are reported to have undergone 
germline mutations61. The repetitive region is a hotspot 
for indels and frameshift mutations that cause truncation 
in folliculin protein. Hence, BHD is now considered 
as a tumour suppressor gene62. In GC with MSI-H, 16 
per cent cases of mutations in BHD gene have been 

reported63. The reports have also shown mutations in 
BAX and TGF-βRII in BHD mutated GC cases. To sum 
up, BHD mutations are a rare event in MSI-H GC and 
occur downstream to BAX and TGF-βRII mutations. 

	 Autophagy (ATG) is a process considered as a type-
II programmed cell death (PCD) and has a relationship 
with apoptosis. The former has a role in cell survival 
also64. Mutations in the (A)10 repeat of UVRAG (ATG) 
gene in 9-28 per cent and 18-28 per cent cases of 
GC and CRC, respectively were reported in MSI-H 
cases39. 

	 Bloom syndrome (BLM) gene undergoes 
frameshift mutations, occurring in poly(A)9, resulting 
in the generation of a truncated and non-functional 
BLM protein. The aberration at BLM gene is known 
to cause Bloom syndrome which is a pre-malignant 
situation characterized by genomic instability and 
high mutational rates. An inverse relationship of BLM 
gene with TGF-βRII mutations was reported and the 
relationship was more evident when considered along 
RAD50 gene28. Loss of BLM expression by deletion 
of trinucleotide and mononucleotide repeats due to 
MSI results in the increase of the genetic irregularity 
of an already present unbalanced genotype in gastric 
tumours40. The role of BLM in GC has been proposed 
to be of a major kind associated with hMSH3/hMSH6 
mutation but is a secondary mutator phenotype.

	 The changes in the function of a gene could be due 
to genetic or epigenetic changes. The latter do not affect 
the underlying DNA sequence rather these change the 
function of the gene by processes like methylation, 
acetylation, etc. These changes can persist through 
generations like the germline mutations. In gastric 
cancers, many genes undergo hypermethylation. 
hMLH1 gene is one of the most studied genes in the 
incidences of cancer. Earlier, mutation in coding 
region of hMLH1 gene was thought to be responsible 
for the MMR deficient phenotype in GC, but now 
through several studies the hypermethylation of CpG 
island region in the promoter of hMLH1 has been 
found responsible for MSI in GC patients66. For the 
inactivation of hMLH1 gene, methylation at a small 
region (from -270 to -199) proximal to transcriptional 
start site is important and consequently may result in 
MSI in a subset of GC cell lines. In addition, hMLH1 
hypermethylation occurs chiefly in the surroundings 
of HPP1 (other related gene) hypermethylation. It can 
be said that HPP1 hypermethylation occurs at early 
stages of GC in MMR deficient cells. A correlation 
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exists between MSI phenotype and CDH1 promoter 
methylation postulating that during methylation  
process, entire group of genes may be jointly methylated. 
The silencing of these genes by hypermethylation of 
promoters may participate in carcinogenesis through 
the microsatellite instability pathway67. 

	 Taken together, the targets of MSI in gastric cancer 
are mostly harbouring mononucleotide repeats that 
are generally altered by frameshift mutations or indels 
(Table). Moreover, the incidence of gene mutations in 
GC is quite similar to CRC (Fig. 3)21,29,32,36,42. These 
events further lead to change in phenotype governed 
by the respective genes. 

	 According to the loss of function during the 
onset of GC, two types of genes have been proposed 
by Perucho68: (i) Primary mutated genes: these genes 
are responsible directly for the occurrence of GC. 
Genes under this category are mutated at first in the 
molecular pathway. For example, TGF-βRII, BAX, 
hMLH1, etc. (ii) Secondary mutated genes: genes 
which are indirectly mutated in the carcinogenesis of 
the stomach. These are regulated downstream of the 
primary mutated genes. These have a meandering 
effect on GC phenotype. These include Wnt genes, 
BHD gene, tyrosine phosphatase kinase gene, etc.
	 Accordingly, the genes get activated in early or 
late phase of the carcinogenesis depending upon the 
above classification. As switched on and off in a signal 
transduction pathway, the abnormal primary mutated 
genes direct the mutation in the secondary target genes. 
Also, the rate of mutation increases in the secondary 
mutated genes following aberrations in the primary 
mutated genes.

Clinicopathological implications of gastric cancer 
with MSI-H phenotype

	 Various clinicopathological features are associated 
with GC which includes GC type- intestinal or diffuse, 
stage, survival rate, location, mucin type, lymphoma 
association, age and sex (Fig. 4).

Histological and phenotypic features

	 As mentioned earlier, GC is divided into two 
classes: intestinal or diffuse type. The intestinal type is 
preceded by a process spanning various stages starting 
from normal mucosa, followed by chronic gastritis, 
atrophic gastritis, intestinal metaplasia, dysplasia and 
finally cancer. The first stage of gastritis is due to 
the deterioration of the normal mucosa succeeded by 
glandular loss and intrusion of inflammatory cells into 
the glandular zones in atrophic gastritis. In the next 
step, the normal mucosa is replaced by intestinal type 
epithelial cells and at last stage before acquiring the 
state of cancer, the cells gain the potential to become 
cancerous and metastasize. Most of the studies till 
now have shown strong association of MSI-H in GC 
with intestinal type. Several reports have shown the 
association of GC with MSI or LOH69,70. MSI-H was 
reported highest in GC and GC-intestinal metaplasia 
cases when the tumour was extracted from the upper 
third of stomach whereas, LOH was detected frequently 
in the cases having lymphatic and vascular invasion in 
GC and GC-intestinal metaplasia71. Intestinal type GC 
undergoes much genomic instability in comparison 
to diffuse type. These reports not only help in better 
prognosis but also tell about the exclusive features 
shared by the two types of GC.

	 MSI-H status also varies with the stage of the GC. 
MSI-H presence is more prevalent in early phase of 
the four developmental steps72. MSI caused by hMLH1 

Fig. 3. The frequency of mutation in various targeted genes in 
sporadic colorectal cancer (CRC) and gastric cancer (GC).

Fig. 4. Various clinicopathological features associated with gastric 
cancer in MSI-H tumours.
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methylation has a very important role in GC at stage 
IV73. The other clinicopathological features associated 
with GC are antral location, female sex biasness, 
older age, high survival rate, and low lymph node 
metastasis74-76. 

Age and sex

	 Young patients (<40 yr of age) around the world, 
account for only <5 per cent of all GCs77. Comparison 
of the occurrence of GC in young patients with older 
patients suggests that the former show a more deleterious 
clinical course with poor prognosis. Therefore, the 
genetic profile of younger GC patients might be 
different from that of older patients and both show 
different clinic-pathological features. For example, 
gastric tumours in elderly are generally located in the 
lower third region, show relatively low metastasis 
and are present in 8-15 per cent of synchronous GCs 
whereas the younger patients have tumours in middle 
third region with relatively high metastasis occurring 
in 3 per cent synchronous GCs78-80.

	 Epigenetic changes also play a major role in GC 
incidences in elderly patients. The methylation of 
hMLH1 gene and its loss of expression increases with 
increase in the age of the GC patient81. Age related gene 
methylation may have an important role in increasing 
the chances of development of malignant neoplasms in 
older patients as CpG island methylation is a dominant 
mechanism for gene inactivation. For example, in 
elderly people clinicopathological characteristics like 
poorly differentiated medullary type adenocarcinoma 
of intestine could be due to an epigenetic event 
within the hMLH1 gene involving hMLH1 promoter 
hypermethylation82. A strong positive correlation 
between MSI and GC in young female over young 
male patients has been exhibited83. These results 
suggest involvement of different molecular pathways 
in the onset of GC in male and female patients such 
that one of these may follow mutator pathway whereas 
the other follows suppressor pathway. 

Multiple gastric cancers, mucin phenotype and 
lymphoma development

	 Once initiated, a cancer can further spread out 
to surrounding areas resulting in multiple cancer 
types in different body parts or in the same region. 
The results published till date convey that either the 
genetic makeup or the environmental factors of the 
patients are responsible for the occurrence of the 
multiple GC with very high MSI67,71. The tendency of 
multiple gastric cancers is also directly proportional 

with age, for example, old aged persons are more 
prone to development of multiple GCs73. Studies have 
shown the usage of MSI as a molecular marker for 
the prediction of multiple GCs23. MSI not only results 
in carcinogenesis but also promote the occurrence of 
multiple GCs over solitary cancer73. Patients having 
GC with MSI-H show higher prevalence of secondary 
GC in comparison to patients with MSI-L or MSS GC. 
Some genes like TGF-βRII, BAX and hMSH3 undergo 
higher mutations in the type I synchronous carcinomas 
as compared to type II synchronous carcinomas 
suggesting that MMR system impairment might have 
an important role in carcinogenesis67.

	 One of the basis of classifying gastric carcinoma 
is the presence of extracellular mucin in tumours 
(atleast 50% of tumour volume) as defined by World 
Health Organization84. Mucin type or mucinous 
gastric cancer (MGC) comprises 2-6 per cent of all 
GC types85. Its association with MSI and associated 
clinicopathological features are still debatable. Variable 
levels of association, from low to high, have been 
reported between MSI and MGC in different reports31,85. 
Researchers have also tried to correlate the two by 
comparing MSI and mucin phenotype in multiple GC 
and solitary GCs. Early multiple GCs and early solitary 
GCs display different mucin phenotypes. The early 
multiple GCs had dominant mucin phenotypes as well 
as MSI frequency86. These results suggest that mucin 
phenotype alongwith MSI may aid in prognosis of 
early GCs as compared to advanced GCs. 

	 Mucosa-associated lymphoid tissue (MALT) 
lymphomas are extranodal low-grade B-cell tumours, 
developing in the stomach and in other organs also. 
Genetic instability was recorded in 69 per cent patients 
with gastric MALT lymphoma, of which 54 per cent 
displayed replication-error-positive phenotype87. MSI 
has been speculated to have a direct role in MALT 
lymphomas, however, convincing evidences are still 
lacking. For the analysis of MSI, markers neighbouring 
the chromosomal loci involved in lymphoma should be 
used to follow ‘Real Common Target Genes’ model. 
This model entails that a specific group of genes called 
real target genes, having microsatellite repeats undergo 
high frequency of mutations as compared to other 
microsatellite positive bystander genes and assist in 
tumour growth88,89. 

Dietary factors, familial connection and 
demographic biasness

	 Various factors associated with the occurrence 
of GC also include diet factor and family history 
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affecting the MSI status. A weak positive relationship 
between family history (if affected person is mother 
only) is ascertained with 2 bp deletion in the MRE-11 
gene45. High consumption of red meat and meat sauce, 
nitrite intake, total protein level and sodium intake 
affect the normal phenotype and transitions to GC in 
MSI-H lines90. Alcohol consumption, vitamin C and 
cigarette smoking induces GC with hypermethylation 
of hMLH191. The exact mechanism by which alcohol 
consumption and cigarette smoking leads to GC is not 
known. 

	 Majority of GCs belong to sporadic type and of 
these only 10 per cent accounts for familial aggregation. 
Germline alterations in CDH1 gene has been identified 
in families with clustering of early onset diffuse 
GC known as hereditary diffuse GC. The pattern 
involves lower frequency of CDH1 mutation (20%) 
in families from countries with high incidence of GC 
and countries having lower prevalence of GC with 
high CDH1 alterations (50%)92. Family having a case 
history of GC is likely to have progeny exhibiting GC 
phenotype. People taking animal protein rich diet have 
adverse effects on GC prognosis among the positive 
family history cases90. Remarkably, the difference 
in sporadic and familial cases was only with regard 
to the age of onset and gender while sharing other 
clinicopathological features. MSI is strongly correlated 
to familial GC in contrast to HNPCC93. 

	 It has been noted that populations inhabiting 
different geographical regions in the world have 
variable GC status with higher cases in Asia as compared 
to USA and Europe1. The difference in population 
response to GC subtypes is due to environmental 
factors, diet, genetic predisposition and association 
with Helicobacter pylori. Korean and American 
patients did not show any marked difference between 
MSI-H and MSI-L status22. Others have reported a 
highly susceptible Italian population towards GC 
where genetic alterations in the non-invasive neoplasia 
are due to MSI94. In European populations with a 
very high risk of GC, alterations of MMR system are 
thought to be prevalent during the early molecular 
events in carcinogenesis of stomach. MSI prevalence 
in Japanese GC samples was higher in comparison to 
samples from American patients of European descent 
and same pattern was seen for advanced tumour cases 
among Japanese patients and American patients95.

MSI detection for chemosensitivity

	 A chemotherapy regime, neoadjuvant 
chemotherapy, based on 5-fluorouracil (FU) and 

cisplastin is frequently used to treat advanced 
gastric carcinoma. The most important aspect in 
the treatment of neoadjuvant therapy is the precise 
knowledge of individual’s response to the treatment 
that depends on the genetic makeup as well as different 
genetic alterations in the cells. Various studies have 
reported the prognostic exploitation of MSI status 
in chemotherapy. MSI-H phenotype did not play an 
important role in predicting any benefit of neoadjuvant 
chemotherapy on overall survival in GC and has no 
correlation with chemosensitivity as proved by an in 
vitro sensitivity test96. Other reports have shown a 
major difference between chromosomal instability 
and MSI with regard to response to neoadjuvant 
cisplastin based chemotherapy. Resistance of cell lines 
to chemotherapy due to apoptosis escape (loss of p53 
gene or damaged MMR system) and the importance 
of p53 mutations and MSI for predicting the response 
to neoadjuvant FP chemotherapy in gastric carcinoma 
have been reported97 .

Pathogenic agents responsible for MSI in gastric 
cancer

	 One of the causative factors of GC in humans 
includes involvement of pathogenic agents. The two 
most studied ones are Epstein Barr Virus (EBV) and 
Helicobacter pylori. These factors involve a mechanism 
which results in MSI of the MMR system and finally 
the cancer phenotype. Some of the facts regarding 
these two pathogenic agents are mentioned below.

Epstein Barr virus

	 The EBV is an omnipresent human virus causing 
several human malignancies. At least, 10 per cent 
cases of GC are due to the pathogenesis of EBV in 
the stomach98. The mechanism of carcinogenesis 
through EBV remains unclear. Epigenetic changes like 
methylation of the CpG islands of promoter region of 
the genes like p16, and hMLH1 are common in EBV 
associated GC99. Methylation of CDH1 gene has 
invariably been recorded in EBV associated GC but 
its correlation with MSI was found to be significant66. 
Experiments with de novo carcinomas elucidated a 
mutually elite pattern between the presence of EBV 
and MSI positivity that are independent of each 
other100. These results convey that MSI in GC and 
EBV infection of the GC involve different molecular 
pathways of carcinogenesis. 

	 Association of EBV with lymphoepithelioma like 
carcinoma or medullary carcinoma of the stomach is 
a rare type of gastric carcinoma and is described as 
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tumours with histological similarity to nasopharyngeal 
carcinoma. This state is called as gastric carcinoma with 
lymphoid stroma101. Two subsets of GC with increased 
number of lymphocytes are classified as EBV positive 
cancers and MSI-H cancers. The CD3 (+) and CD8 
(+) tumour infiltrating lymphocytes are characteristic 
of MSI and MSS/EBV (+) associated GCs which can 
be used as favourable prognostic factor, independent 
of the pathogenesis of GCs102. However, other workers 
have reported no beneficial role of EBV as a prognostic 
factor in lymphoepithelioma GC over MSI103. 

Helicobacter pylori

	 The Gram-negative microaerophilic bacterium 
H. pylori inhabits stomach of at least half of the 
world's population101. Exposure to the bacterium in 
the childhood can prolong the infection for the rest of 
the life of the host if not diagnosed and treated at right 
time. The prolonged contact with the bacteria results 
in the carcinoma of the stomach and is considered 
as a class-I carcinogen. The risk of developing GC 
is related to the heterogeneity of H. pylori virulence 
factors, namely the Cags pathogenicity island and the 
vacuolating cytotoxin VacA105.

	 H. pylori infection has a negative effect on the 
MMR system and the activity of various MMR 
proteins like hMLH1, PMS1, PMS2, hMSH2 and 
hMSH6 gets significantly diminished106. The decrease 
in the expression of the genes is dose dependent and 
independent of the virulence factor CagA. The cells, in 
which H. pylori has been eradicated, return to normal 
levels of hMLH1 and hMSH2 proteins signifying a 
reversible inhibition of MMR gene expression. Other 
reports of methylation of CDH1 in cases with H. 
pylori-CagA+ phenotype comparative to H. pylori-
CagA- ones in intestinal type GC are also available107. 
An inverse relationship between MSI and CagA 
protein has also been reported suggesting that other 
factors are also responsible for MSI in GC in addition 
to the bacterium CagA protein107. GFP reporter-based 
in vitro assay demonstrated that H. pylori infection 
induces MSI, linked with low expression of the MMR 
proteins hMLH1 and hMSH2108. H. pylori induces 
genomic instability of (CA)n repeats in mice resulting 
in impairment of MMR machinery and generating a 
transient mutator phenotype making the gastric epithelia 
susceptible to aggregation of genetic instability leading 
to gastric carcinogenesis109. A recent review110 on H. 
pylori associated GC has proposed a model to explain 
how the bacterium causes carcinogenesis. Three 

steps have been proposed: increase in DNA damage 
frequency and decrease in repair activity, mutations 
of mtDNA and finally, induction of a transient mutator 
phenotype upon infection with H. pylori110. While some 
researchers contradict above findings and suggest that 
both H. pylori negative and positive tumours showed 
same amount of MSI in GC and even after eradication 
of the bacteria there were no changes in chromosomal 
aberrations111 thereby suggesting that H. pylori infection 
act as a synergistic factor in GC but not a direct factor 
causing carcinogenesis by altering the gene expression. 
With the progression of gastric lesions, the methylation 
of repetitive elements like SINEs, LINEs and satellites 
increases regardless of the H. pylori infection. To sum 
up, most reports suggest that H. pylori is a leading factor 
for causing GC by damaging the MMR machinery. 

Mitochondrial microsatellite instability

	 The development of GC is a complex process 
during which a large number of mutations arise in 
nuclear and mitochondrial DNA (mtDNA). Human 
mtDNA is a circular genome composed of 16569 
bp and encodes 13 polypeptides of mitochondrial 
respiratory chain, 22 tRNA and 2 rRNA required for 
protein synthesis112. Several repetitive elements like 
mono- and di-nucleotide repeats are present in the 
mitochondrial genome. Of these, the most suitable 
region for studying mitochondrial MSI (mtMSI) is 
located in the D loop region. Two important sites include 
a (CA)n microsatellite repeat starting at 514 bp and a 
homopolymeric C tract present between the nucleotide 
bases 16184 and 16193 bp which could be interrupted 
by T at 16189 bp113,114. The former region contains 
some regulatory sequences which are important for 
the normal functioning of the cells. Mitochondrial 
genome is susceptible to around 10-100x mutations 
because of its structure and the nature of replication 
machinery115. The mt genome is also vulnerable to 
oxidative damage due to high reactive oxygen species 
(ROS) concentration in the vicinity of the organelle 
alongwith the poor MMR machinery. Other than 
CRC, mtMSI has also been reported in case of gastric 
cancer116. Two components, ROS and defective MMR, 
are responsible for the mtMSI in H. pylori-associated 
GC117. Various mutations in the D loop region in GC 
phenotype reflecting insertions, deletions, transitions 
and frameshifts were encountered. Some genes like 
ND1, ND2 and ND5 (subunit of NADH dehydrogenase) 
provide a hub of mitochondrial genetic instability 
involved in gastric dysplasia and GC. 

608 	 INDIAN J MED RES, MAY 2012



	 The clinicopathological characteristics of mtMSI+ 
gastric cancers remain unclear. No obvious relationships 
between mtMSI and tumour size, depth of invasion, 
node metastasis or clinical stages were detected 
indicating a limited role of mtMSI in predicting the 
prognosis of gastric carcinomas. Insertions as well 
as deletions in the D-loop region of the mtDNA and 
transitions in genes like ND1, ND5 and CO1, were 
found in GC samples but have no association with 
MSI118. It seems that as the carcinogenesis progresses, 
the level of mtMSI also elevates and thus, mtMSI has 
a significant function in the onset of GC. In tumoral 
cell mtDNA, a ~8.9 Kb deletion is more prevalent 
as compared to other mutations. This mutation is 
also related to a particular age group (40-50 yr) and 
intestinal type of GC119. mtMSI is an early and valued 
event in the succession of GC, that too of intestinal 
type. ROS, genetic irregularity, environmental factors 
and poor efficiency of mtDNA repair machinery cause 
such deletions. Suggestingly, mtMSI can be used as 
a prognostic marker for GC prediction at a particular 
state. Moreover, the use of mtMSI as a prognostic 
marker aid in the identification of high-risk dysplasia 
that may develop into intestinal type GC120.

	 mtDNA mutations are associated with H. pylori 
infection causing chronic gastritis and peptic ulcer 
tissues indicating that the consequences of H. pylori 
infection are the aggregation of mutations in mtDNA 
at early phases of GC development109,121. The bacterial 
infection directed high frequency of mutations in 
the D-loop region alongwith genes ND1 and CO1 of 
mtDNA of gastric cells109. 

	 Some tumour suppressor genes are reported to 
be associated with the instability of mitochondria 
of which RUNX3 is the one recently reported. 
RUNX3 belongs to runt related transcription factors 
(RUNXs) and undergoes methylation producing the 
ineffective RUNX3 protein122,123. In several studies, 
the MSI-H, mtMSI and RUNX3 promoter methylation 
implicated in GC have been associated with several 
clinicopathological variables, although different reports 
lead to different conclusions118,124-126. No association 
with any of the clinicopathologic variables are reported 
whereas mitochondrial instability only proved to 
be associated with the tumour node metastasis127. 
mtMSI and nuclear MSI-H GC evolution is resultant 
of methylation of RUNX3 gene as suggested by these 
events127.

	 mtMSI is a new field for investigation as a causative 
agent for development of cancer. Recent reports have 

shown its association with several mutations and finally 
with carcinogenesis whether it is colorectal, gastric or 
female cancer. The D-loop region of the mitochondria 
is highly susceptible to these changes and promotes 
carcinogenesis. Future investigations will further throw 
light on this new cancer causing phenomenon.

Conclusion

	 After many years of continued progress in the 
molecular characterization of human cancers, a few 
marker models have been developed for clinical use. 
Microsatellite instability offers a good prognostic 
marker associated with different cancer types. The 
molecular detection of MSI is relatively simple in 
comparison to the identification of the majority of 
molecular genetic characteristics of potential clinical 
value, such as gene mutations and alterations in gene 
expression. Knowledge of the clinicopathological 
characteristics and other causative agents may facilitate 
the use of MSI detection as an integral part of the 
routine classification of all gastrointestinal tumours in 
the future. MSI based approach will provide a wealth 
of opportunities for analyzing the applicability of 
molecular characterization of cancer and exploring the 
possible benefits of its integration with other traditional 
approaches.
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