SPRITE: A Learning-Based Text Retrieval System in DHT Networks

Yingguang Li'
!National University of Singapore
liyg@comp.nus.edu.sg,

Abstract

In this paper, we propose SPRITE (Selective PRogres-
sive Index Tuning by Examples), a scalable system for text
retrieval in a structured P2P network. Under SPRITE, each
peer is responsible for a certain number of terms. However,
for each document, SPRITE learns from (past) queries to
select only a small set of representative terms for indexing;
and these terms are progressively refined with subsequent
queries. We implemented the proposed strategy, and com-
pare its retrieval effectiveness in terms of both precision and
recall against a static scheme (without learning) and a cen-
tralized system (ideal). Our experimental results show that
SPRITE is nearly as effective as the centralized system, and
considerably outperforms the static scheme.

1. Introduction

Peer-to-peer (P2P) computing has enabled end-users to
share their data with ease. However, text data and docu-
ments are very demanding very demanding in a distributed
environment as traditional centralized indexing techniques
cannot readily be deployed. In a large scale distributed en-
vironment, global knowledge is usually unavailable. More-
over, it is impractical to index all terms of a document (as
is done in a centralized system) in a distributed fashion.
Therefore, novel techniques are needed to support text re-
trieval in distributed systems.

In the literature, there are several approaches to sup-
port text retrieval in P2P systems. The most straightfor-
ward approach, typically adopted in unstructured systems
like Gnutella [5], is to flood a query within a certain radius
of the neighborhood of the querying peer. However, such an
approach is not only bandwidth inefficient but may have low
recall as peers containing relevant documents may be far
away and unknown within the local neighborhood searched.
To reduce the communication overhead, an alternative ap-
proach is to employ routing indexes [2] that provide more
directed search as only peers with matching query terms are
searched. However, this method also operates within a cer-

H.V. Jagadish?

jag@umich.edu,

Kian-Lee Tan!
2University of Michigan
tankl @comp.nus.edu.sg

tain radius in an unstructured environment, and has the same
limitation of low recall.

A third approach employs a DHT-based (Distributed
Hash Table) network. All terms in every document are
indexed in the DHT network. In other words, each peer
maintains an inverted list for the terms assigned to it by the
overlay network. To process a query, all peers responsi-
ble for the query keywords are visited, and the relevant in-
dex entries are returned to the querying peer. The querying
peer can then compute the similarities between the query
and the documents containing those keywords to generate
the ranked list. While this approach is relatively query-
efficient, and is expected to have higher recall than the other
approaches, the main challenge is that of building and main-
taining such a distributed index. Even after stemming and
stop-word elimination, the total number of terms in a docu-
ment is too large: each term is likely to have been assigned
to a different peer, so that a single document insertion could
require updates in a large fraction of the network. There-
fore, the overhead to disseminate the indexing information
is too high to be of practical use. In addition, it is equally
costly for the owner peer to periodically probe the indexing
peers to ensure that they are still “alive”. If one could some-
how bring down the cost of index construction and mainte-
nance, it appears that this third approach, with a structured
overlay network, will provide the most effective retrieval
system. It is exactly this challenge that we tackle in this
paper.

Our proposed solution is motivated by three observa-
tions. First, a document will most often be queried using
a small number of terms that characterize it. It may suf-
fice to index a document on only these charateristic terms,
and drop all others. In fact, it has been argued in [16] that
if a query term p is not among the top frequent terms of a
document, then adding p to the query is unlikely to mate-
rially affect the ranking of this document. Second, a term
that is not used in a query has no effect on the ranking of
the documents. If we can know which terms will be used
in queries that seek a particular document, then we should
index only those terms for the document: all other terms
merely increase the index size without providing any addi-

tional accuracy. Third, users with similar interests are likely
to retrieve a similar collection of documents with a similar
set of queries that share some common keywords. Such a
query locality phenomenon is not uncommon in search en-
gine queries - analysis of Excite search engine trace [19]
and Altavista search engine trace [14] showed that queries
submitted to these search engines not only have significant
locality, many are repeatedly issued by either the same or
other users, and that multiple-word queries are common.

We note that the first and second observations suggest
that it may suffice to index only a small well-chosen set
of representative terms in each document. The second and
third observations also hint that the query keywords may
potentially contribute to the set of representative terms. Fur-
thermore, the third observation suggests that it may be pos-
sible to learn from past queries - since similar queries share
certain common keywords, past queries may be used to re-
fine the selected representative terms.

Based on the above observations, we propose our al-
gorithm SPRITE (Selective PRogressive Index Tuning by
Examples) that ensures a small set of representative terms
are well-chosen. SPRITE also progressively learns from
(past) queries to refine the set of chosen indexing terms. In
this way, new terms may be injected into the system, while
“obsolete” terms (as a result of changing access patterns)
may be removed/replaced.

The rest of this paper is organized as follows: Section 2
discusses the related work on supporting text retrieval in a
P2P network. An overview of the SPRITE architecture is
described in section 3. In Section 4, we discuss how queries
are processed in SPRITE. We also discuss how to integrate
the text retrieval task with the overlay network routing pro-
tocols, using Chord[15] as a specific example. Whereas we
have used Chord in all our examples and in our implemen-
tation, there is nothing in our central idea that depends on
Chord, and the reader should be able to see how to make the
necessary adaptation to a different overlay network.

In Section 5, we present the scheme to select and refine
indexing terms. We have implemented the proposed strat-
egy, and compare its retrievel effectiveness (in terms of both
precision and recall) against a static scheme (without learn-
ing) and an ideal centralized system. Our experimental re-
sults, presented in Section 6, show that SPRITE is nearly
as effective as the centralized system, and outperforms the
static scheme. In Section 7, we discuss some possible exten-
tion works of SPRITE. Finally, we make some concluding
remarks in Section 8.

2. Related work

In structured P2P networks [15, 12], including the
“loosely structured” networks [1], search on file names can
be easily handled. Moreover, the lookup function can guar-

antee a term be found in log NV hops, where N is the number
of peers in the network. A file name can be treated as an in-
tegrated entry or a set of terms, and hashed if necessary, and
then indexed in the network. However, indexing file con-
tent involves more challenging issues. Many of these have
been addressed in [9], in which two major concerns are dis-
cussed: storage constraints and communication constraints.
Both of these are caused by the large number of terms in a
document to be indexed.

To the best of our knowledge, the most similar work to
SPRITE is eSearch [16]. In eSearch, a document is indexed
on the top k terms and the complete inverted list of the doc-
ument is replicated and stored in k indexing peers. In the
description of top term selection, the authors assume that
some global statistics can be obtained. However, global
statistics are expensive to obtain and tend to be inaccurate
in a P2P network, where peers frequently join and leave
the network, and documents are shared and unshared fre-
quently. In SPRITE, we do not make this assumption. Term
expansion is employed in eSearch. This is orthogonal to
the basic scheme, and not discussed further in this paper,
though term expansion could also be used with SPRITE.

In [10], the authors proposed a scheme to process
content-based retrieval in hybrid P2P networks. In the hy-
brid network, a super peer is responsible for summarizing
the contents among its normal peers. The summaries are
defined as “resource descriptions”. Queries are routed ac-
cording to the “resource descriptions”: a query is forwarded
to the peers containing the relevant resources with some
probability above a threshold. KSS [4] divides predefined
queries into a set of combinations. Each element in the set
is hashed and indexed in a structured DHT. The query term
space can be very large and the combination is too complex
to forecast. Besides addressing some challenges of key-
word search in P2P systems, [9] proposed to combine some
techniques (e.g., caching and query compression) to reduce
communication cost. In [13], bloom filter is employed to
compress the message size. Works based on latent seman-
tic indexing (LSI), such as pSearch [18, 17], predefines the
term spaces. A global knowledge is assumed to compress
documents with LSI into fewer dimensions. The indexes
are rotated several times and a set of important indexes are
placed into an overlay of CAN [12] each time. A query is
preprocessed similarly and answered as a knn search.

3. The big picture

The SPRITE system comprises a large number of com-
puters (peers) that are organized into a structured overlay
network, such as Chord, that is capable of supporting sim-
ple indexing through a distributed hash table. Each peer
plays two roles: owner peer and indexing peer. An owner
peer owns and shares certain documents. It is responsible

for maintaining each shared document it owns, locally in-
dexing it, and selecting the global index terms (A global
index term is a document term to be injected into SPRITE
to facilitate query searching.) for it. An indexing peer is
responsible for managing meta-data for terms assigned to
it. This meta-data is primarily an inverted index of the
(global index) terms managed by the peer. The informa-
tion maintained in the inverted list include the documents
containing the term and their respective owner peers. In ad-
dition, each indexing peer also maintains a history of past
queries (rather, the keywords corresponding to the queries).
To reduce the storage, each indexing peer maintains only
the most recently issued queries.

There are two main services supported by SPRITE. First,
a peer can share a new document with other users. In this
case, the document owner has to select and publish corre-
sponding global index terms into the SPRITE system. Sec-
ond, a peer can submit a query to retrieve relevant docu-
ments through keyword search. While the query processing
service is straightforward, the document sharing service is
challenging. As noted above, it is too expensive to publish
all the terms (even after stemming and stop-words elimi-
nation) in a document. Moreover, based on the observa-
tions in the introduction, we believe it would suffice to in-
dex only a small well-chosen set of representative terms.
Thus, SPRITE publishes only a small subset of represen-
tative terms that are subsequently refined based on past
queries.

More formally, let the set of documents in the network be
D and the set of queries be (), over all time. Suppose doc-
ument d; is determined to be relevant to queries g;1, ¢;2, --.
q;x- Let the union of the keywords in the queries be K;. In
the ideal case (with perfect knowledge into the future), doc-
ument d; is only indexed on the keywords in K;. SPRITE
attempts to do exactly this with limited knowledge: it learns
a set of keywords, K/, which approximates K;. Terms in
K| — K; are indexed unnecessarily; terms in K; — K may
cause document d; to be misjudged as irrelevant to some
query ¢;;. Choosing K wisely is at the heart of SPRITE.

Towards this end, for each document, SPRITE begins
with an initial guess at the important terms. This guess
can be based on user input or through automatical selection
of high frequency terms in the document, or a combination
of such techniques. For ease of presentation, in this paper,
we shall simply pick the most frequent terms as the initial
global index terms. Next, with these terms, SPRITE ex-
amines past queries that have queried these terms. (Recall
that the queries are stored at indexing peers. As such, they
can be obtained from the indexing peers.) Based on these
queries, SPRITE identifies a new set of terms to be indexed,
augmenting and replacing the initial set of index terms. This
process of examining past queries, and refining the indexing
terms, is repeated periodically.

Ql (a,d,e) 0
Q2 (a, b, d)

oo
&

Q2 (a,b,d)
Q3 (b,d,e)
5

a: 0.
b: 0.
c: 0.
d: 0.
e: 0.
f: 0.
2: 0.

Figure 1. Indexing terms in a Chord Ring.

When an owner peer of a document D wants to update
the indexed terms of D, it polls the indexing peers with
an index update message that contains all the global index
terms of D. It is possible that a past query contains multi-
ple global index terms of D and thus is cached by multiple
indexing peers. Apparently, it involves much redundancy if
such a query is sent to the owner peer by all related indexing
peers. In SPRITE, every cached query is hashed also, which
can be precomputed offline in fact. The closest term to the
query can be identified among all global index terms by
comparing the hash values. Only the indexing peer respon-
sible for the closest term sends the query back. In this way,
we avoid sending the same query multiple times. Note that
the number of global index terms is much smaller than the
number of past queries cached in the indexing peers. There-
fore, the redundancy above can be removed effectively.

Figure 1 illustrates an example with peer 12 as the owner
of document docl. Suppose two terms a and b are selected
as the most important terms in docl to be indexed initially.
These terms are published to the appropriate indexing peers,
say peer 14 and peer 5 for a and b respectively. Now sup-
pose Peer 14 receives two queries, Q1 and ()2, on term a,
and peer 5 has two queries, (3 and @4, on term b. In the
next learning period, peer 12 sends messages to peer 14 and
peer 5 for past queries on terms a and b respectively. Upon
receiving the four queries, peer 12 calculates the similarity
between the queries and document docl and then chooses
another set of terms to be published further. In this exam-
ple, terms d and e are chosen and added into the index. It
is worth noting that even though term c has a higher rank
(more frequent) than d and e for docl, yet it is not indexed
because it has not been used in any query for docl thus far.
One may worry that ¢ may have been specified as a search
term in many queries, none of which returned docl, and
regarding which peer 12 is thus completely unaware. How-
ever, we note that peer 12 can be unaware of such queries
only if they do not involve any of {a, b, d, e}. docl will not
be relevant to any such query with high probability, since it
only specifies one of multiple frequent terms in docl.

Next, let’s look at the information retrieval service. A
query is processed in searching and retrieval phases. The
searching phase is more complicated and important since
it decides the quality of the answers. Given a query, all
indexing peers responsible for the query terms are visited,
and the related indices are obtained by the querying peer.
Besides the term frequency, the document length and the
counted document frequency are also returned along with
each index entry. The term frequency and document length
can be combined as a normalized term frequency. Next, at
the querying peer, index entries for the same document are
consolidated and used to calculate the similarity between
the document and the query. Finally a ranked list is con-
structed and a desired number of documents are returned to
users as answers. The retrieval phase is simply a download-
ing action to the relevant documents, so we do not discuss
it further in this paper.

Note that we do not have the precise document frequency
of a term (i.e., the number of documents containing the
term). Instead we use as surrogate the indexed document
frequency, which is the number of documents for which this
term has been chosen as a global index term. The difference
between these two frequencies is the set of documents in
which the term occurs but has not been chosen for the global
index. The indexed document frequency for each term is
easily available at its indexing peer. Semantically, one can
see that indexed document frequency serves the same pur-
pose as, and can even be argued to be more appropriate than,
regular document frequency. This intuition is borne out by
the retrieval quality results we present in Section 6.

4. Query processing

Consider a query peer that issues a keyword search, say
comprising n terms. The query peer first hashes on each
keyword to determine the indexing peer responsible, and re-
trieves the corresponding inverted list entries. Using these,
it can determine the similarity between the query and po-
tentially relevant documents.

In traditional IR techniques, every term in a document is
assigned a certain weight based on some statistics. One of
the most popular formulas is T F'-I DF'. The weight of term
k in document % is:

N
Wik = tir X log e

Here, t;;, is the frequency of term k in document ¢ nor-
malized by the document length, IV is the total number of
documents in the entire corpus and ny, is the document fre-
quency, or number of documents containing term k.

In a structured P2P network, ¢; is available as part of
the metadata in the inverted list. The number of documents
containing term k, n}, can be counted by the querying peer
once the list is retrieved. However, this indexed document

frequency is smaller than ny, in the case of SPRITE because
the term may appear in some documents but is not selected
as a global index term because it is lowly ranked among
other terms in these documents. N, unfortunately, cannot
be accurately determined in a P2P context: peers join and
leave the network and documents may be shared and un-
shared at will. However, N is usually much larger than ny,
except for the terms in the stop word list, which are filtered
away anyway. As long as N is the same for all the peers
in calculating term weights, only the absolute /D F’ values
will be affected and so does the similarity. Thus, it will not
affect the relative positions of documents in the final ranked
list. Therefore, we can simply use a sufficiently large N.

Given the individual term weights, we use the similarity
formula proposed in [8] (the second method):

n %
E wQ,j XWi, j
j=1 Y3 ,J

o \/number of terms in D;

where wg ; is the weight of the jth term in query @, and
w; ; is the weight of the jth term in document D;. Note
that the number of terms in D; is available in the metadata
of the inverted list retrieved. This formula simplifies the
normalization (compared to the original similarity formula)
and reduces the computation cost. Its performance is shown
to be almost the same as the original formula in [8].

A document D; containing a specified query term ¢; may
not have chosen ¢; to be a global index term. In this case,
w; is erroneously assumed to be zero rather than positive,
and the value of sim(@Q, D;) computed is decreased. In the
next section, we will show how to choose index terms such
that if the true value of w;; is large, then ¢; is chosen as a
global index term for document D; with high probability. If
the true value of w;; is small, then approximating it to zero
introduces only a small error in the score computation and
may make no difference to whether D; is included in the
ranked list for Q.

Before leaving this section, we mention an alternative
approach to compute the similarity between a query and
a document. Instead of the querying peer performing the
computation, we can push the task to the indexing peers.
This approach is adopted in [16]. Here, for each term of a
document indexed, all the terms of the entire document are
also stored as meta-data. In this way, the indexing peers
can determine the similarity between a keyword and the
documents containing the term to produce the ranked list.
However, the indexing peers have to return their locally
produced ranked lists to the querying peer eventually and
the querying peer needs to merge the ranked lists into one.
Many similarity calculations and ranked list sorting are per-
formed repeatedly and redundantly. Therefore, we choose
to assign the entire task to the querying peers.

5. Index construction and tuning

When an owner peer shares a document D, it indexes
some representative terms in the system. This involves two
stages. First, some initial terms in D are chosen and in-
jected into the system. Next, the second stage is performed
periodically to tune the index progressively. Essentially, at
each run, more terms are selected from D based on the his-
torical queries. The index terms for D are then refined by
inserting new terms and removing noisy terms. To control
the number of terms to be maintained, we limit the maxi-
mum number of terms to be indexed to a small value (say,
30). We will present the two steps below. Before that, we
describe the metadata maintained at each peer.

5.1. Metadata in SPRITE

Recall that in SPRITE, each peer plays two roles: owner
peer and indexing peer. Every indexing peer maintains two
types of information: (a) A number of terms and the cor-
responding inverted lists, i.e. the documents that contain
those terms. For each indexed term, the indexing peer also
needs to store the owner peer’s IP address, the owner docu-
ment ID, the term frequency in the document and the docu-
ment length. These metadata are used in query processing.
(b) A set of queries, 0. Each query essentially comprises
a set of keywords. Note that a query is only maintained at
peers whose indexing terms contain at least one query term.
These queries are used in the learning process.

At every owner peer, for each term in a document, two
values are stored: (1) gScore, the similarity between the
document and the most similar historical query (maintained
at an indexing peer) containing this term (to be discussed
shortly); and (2) QF (query frequency), the number of his-
torical queries containing this term.

5.2. Initial term selection

When an owner peer first shares a document, we need
to select an initial representative set of global index terms.
The initial important terms of a document can be selected
systematically or input by users. As a first cut, we adopt
the following approach. First, we summarize the terms in
a document and filter them with a stop-word-list to remove
frequent but meaningless terms, such as “the” and “is”. Sec-
ond, we apply the stemming algorithm to unify terms by re-
moving the suffix, such as “ed” and “ing”. These two meth-
ods are well studied in the text retrieval community. The top
F most frequent terms are then chosen as the initial terms.
Note that at this point, only local information is available,
so initial term selection solely relies on term frequency in
the owner peer.

-~ Q———<~Ql—>~—Q2—>~—Q3—
i il i2 i3
tl, t5
| | Document D
tl, 2, t5
| |
tl, 2,63
(a)
Doc Doc
New Queries
Term: QF, QS Term: QF, QS
QI (tl, 12, 13, t7) t1: 20, 0.75 tl: 21,0.75
’ 4 N t2:5,0.75 _ [12:6,0.75
Q2 (15,16, 14) 5: 30, 033 3:5,0.75
Q3 (15, t4, t7) 3:4,0.5 15: 32, 0.33
t8:1,0.2 t8: 1,0.2
t9:0,0 19:0,0
(b)

Figure 2. The learning phase in SPRITE.

5.3. Tuning indexing terms

The learning stage is invoked periodically. We shall first
present the basic idea with a naive implementation, and then
discuss an efficient scheme. We use Figure 2(a) to illustrate
the learning stage. In the figure, we show several iterations
of learning: at iteration ¢, an owner peer bases its learning
on the historical query set @); at iteration 71, the peer learns
from a larger set of queries, @) U 1; and so on. At iteration
i, it is able to identify two terms, say ¢ and t5. At iteration
i1, it identifies two new terms t» and tg. However, suppose
that we are limited to indexing only 3 terms, and it turns out
that ¢ is the lowest ranked among the 4 terms, thus t¢ is
removed. In iteration io, a new term ¢3 replaces an obsolete
term 5.

The query set used for learning is determined by the cur-
rent set of indexed terms. Essentially, for each indexing
term, the indexing peer is polled to retrieve the query meta-
data of that term. The query set is then the union of all
queries over all the indexing terms. The crux of the learn-
ing scheme lies in selecting the useful terms of a document
from the query set. Now, from the query set, we can gather
two important pieces of information. First, we can deter-
mine how similar is the document to the past queries. We
define the query score, gScore, as follows:

gScore(Q, D) = IngfD\

Intuitively, if a query is very similar to a document, then
it indicates that the terms in the query can represent the
key meaning of the document. In other words, the docu-
ment is likely to be relevant to that query. Careful readers
may question why we have not used the conventional for-
mula to measure the similarity between a query and a doc-
ument. If the conventional formula is employed, the role

of a query and document are interchanged: the document is
treated as a query and the queries are treated as the docu-
ment corpus. This is because we are now selecting similar
queries for a document. In the conventional formula, the
more documents a term occurs in, the less important the
term is, which is not true in our scenario. When choos-
ing descriptive queries, a term occurring in many queries as
well as in the document indicates that the term is more de-
scriptive of the document. Therefore, ¢Score can represent
the similarity between a query and a document better than
the conventional formula.

Second, for each term ¢ in the query set ¢, we can de-
termine how frequently it appears in ¢J. This is denoted as
QF(t,9), the query frequency of ¢ in ¥. This essentially
tells us how common the query term is. Intuitively, if a
term occurs frequently in many queries, it may be poten-
tially useful to index it.

Now, given a set of queries 1, the similarity of term j in
query i to document D (¢;; € D) is defined in the following
formula:

Score(t;j, D) = gScore(Q;, D) - log QF (t;5,9).

The formula indicates that a term is representative to a doc-
ument if (1) the query containing it is similar to the docu-
ment; and (2) the term in the document is frequent among
the queries. Intuitively, it is insufficient to consider (1) alone
since it does not factor in the frequency of the ocurrences
of the terms in a query (and hence fails to consider simi-
lar queries). It is insufficient to consider (2) alone because
a document is relevant to a query if there are more match-
ing terms from the query. Thus, a combination of the two
is necessary. In combining the two, we have used a loga-
rithm of the QF' to give higher weight to the contribution
of gScore. The reason for reducing the effect of QF is be-
cause the qualities of the queries are different. Expert users
usually have good domain knowledge and issue high qual-
ity queries. Such queries are very useful in differentiating
the requested documents from others. On the other hand,
poor queries always include terms that are too general to
distinguish the requested documents.

Based on the ranking by (this combined) Score, we pick
the high scoring terms to be indexed. Now, a straightfor-
ward optimization is for the owner peer to store the query
sets whenever they are retrieved, so that each iteration only
needs to pull back the incremental query set. Even so, this
algorithm is expensive in terms of both storage cost and
computation cost. The owner peer has to keep all the past
queries and check all of them in each iteration of learning.
We propose an algorithm that can compute Score for all
terms based on only the incremental query set between iter-
ations (without having to recompute from the entire histor-
ical query set). See Algorithm 1.

Let the query set between the current iteration and the

last iteration be (). Here, the owner peer only needs to
store some statistics for the past queries (upto the last it-
eration, but excluding queries in Q') along with the docu-
ments instead of the entire set of queries. For each term in
a shared document, only its query frequency and the largest
query score in the history are maintained. Then every new
query in @’ is processed. If the term occurs in the query, we
calculate the query score for this term and count its query
frequency in @Q’. If the query score is larger than the one
saved for past queries, we update it for this term. The query
frequency of this term is the sum of the one for past queries
and the one in Q. A new similarity between the term and
the document is calculated with the two parameters. We
then insert the term with its new similarity into a list sorted
by similarity. If the term exists in the list, then we simply
update its similarity value. After all the new queries are
processed for a term, the largest query score of the term is
stored in the statistics and the query frequency of the term is
increased also. Given two sets, S and S, it is obvious that
max(S1 U Sa) = max(max(S1), maz(Sz2)). So, the query
score used is the largest for a term. QF is simply a count
function and is thus cumulative. With the same two factors,
the multiplication is the same, so the results of Algorithm 1
is equivalent to the naive scheme described earlier (that re-
processes all the queries in each learning iteration). Clearly,
since Algorithm 1 exploits incremental computation (i.e.,
only need to compute for queries that arrive between the
last iteration and the current iteration), it is very efficient.

Algorithm 1: The optimized learning algorithm.

1 Q' is current query set;

2 RL is arank list, which is empty initially;

3 for each t in the document D), do

4 Let g f be the query frequency of ¢ stored for the past queries;
5 Letgf =QF(t,Q");

6 for each Q; € QUQ’ do

7
8

if t € Q; then
Let gs be the largest query score associated with ¢ in
the past queries;
9 gs' = qScore(Qi, Dy);
10 if gs < qs’ then g¢s = gs’;
11 Lets=gs - log (qf + qf’);
12 if t is not in RL then
13 |_ Insert (s, t) into RL;
14 else
15 if the existing similarity is smaller than s then
16 L Replace the existing similarity with s;

17 Choose top T ranked terms for this document;

A learning example with Algorithm 1 is discussed in fig-
ure 2(b). A document, Doc, is limited to be indexed with
three terms. At time ¢, t1, t2 and ¢5 are indexed (shown in
the left Doc). Their similarities to the documents for the
past queries are: 0.75*%log 20=0.975, 0.75*log 5=0.524 and
0.33*log 30=0.492 respectively. Three queries are pulled

back in the learning process: {QIl, Q2, Q3}. Then the
query frequency and the largest query score are updated
accordingly (shown in the right Doc). We recalculate
the similarities and obtain a new ranked list. The new
score of t3 is 0.75%log 5=0.524 and the new score of t5 is
0.33*1og 32=0.501. Thus, t3 is indexed and ¢5 is removed
from the distributed index for Doc.

6. Performance study

In this section, we evaluate the performance of SPRITE.
As reference, we use a centralized text retrieval system and
the basic eSearch system [16]. The centralized system acts
as an ideal distributed system with perfect global knowl-
edge, including the exact document frequency and total
number of documents in the corpus. (We used a classic
TF - IDF scheme in the centralized system). Hence, it
is expected to be superior. By comparing against it, we
will be able to see how close SPRITE is to an optimal so-
lution. The basic eSearch system indexes a fixed number
of most frequent terms in a document. It is the best dis-
tributed search system currently known. The comparison
against eSearch demonstrates the gain that can be derived
from adaptivity/learning.

We preprocessed the documents in the standard way: re-
moving the terms in the stop-word-list, and then stemming
is applied to the remaining terms. The default stop-word-
list in Lucene is used for this purpose. We used the two
standard metrics for text search: precision and recall. If the
top K documents are returned for a query, K’ of them are
relevant to the query and there are R relevant documents
in the entire corpus, then the precision is defined as K’/ K
and the recall as K’/ R. All precision and recall results pre-
sented later are in terms of the ratio of a specific system over
the centralized system.

We implemented Chord as designed in [15]. All terms
are hashed using MD5 hash function. Our study is based
on simulation, and all experiments are conducted on a dual-
Pentium4 3.0GH CPU PC with 1GB RAM.

6.1. Data set and query set

To evaluate SPRITE, we need queries to be “similar”
(share some keywords and relevant documents) for SPRITE
to learn from. Unfortunately, benchmarks are usually cre-
ated to exercise a maximum of functionality with as few
queries as possible. Hence, there is little similarity between
queries. To deal with this, we implemented a query gen-
erator to generate queries from a real dataset and its cor-
responding queries. We used the TREC9 dataset and its
queries [7] as the base dataset. This dataset contains 348565
documents and 63 queries and their corresponding relevant

documents (identified by experts). Our generator is de-
signed based on two reasonable properties: (a) queries with
similar relevant documents as answers ought to share some
common keywords; and (b) the term distribution and result
distribution should follow those of the original query set.
The first property ensures that the system can build an effec-
tive index with the training queries and the testing queries
can benefit from the learning process. The second prop-
erty ensures fairness: popular terms in the original query
set should occur frequently in the generated query set. If an
original query has many answers (the documents), then the
new queries derived from it should have many answers as
well. In the centralized system (the benchmark), the rele-
vant document distribution in the ranked list of a new query
should be similar to that of its original query. The query
generator comprises the following two phases.

Phase 1: Term Selection. In phase 1, for each query
in the original dataset, we generate k£ new queries. (In our
study, we set k to 9.) Let Q = {q1, g2, ...¢n } be an original
query. A new query Q' = {q}, ¢, ..-q}, } is composed of
two sets: Q' = Q) U Q5. The terms in Q) are from the
Q: Q) C Q. Each term in @) is randomly selected from
the term space, which contains all terms appearing in all
documents. Thus, while Q] inherits some terms from @),
QY targets different aspects of the documents to introduce
some noisy terms to model a more realistic scenario. For
the new query @', we need to identify a set of documents
R/ as its relevant results (see phase 2).

We define a tunable parameter, O = ‘I%lll’ to control the

overlap between the original and new queries, where |Q)|
denotes the number of terms in (). The threshold, O, deter-
mines the percentage of terms in the original query that is
retained in the new queries. Tuning this factor will change
the overlap between the original query and new queries.
The actual terms in Q) are randomly picked from Q).

In order to select terms of type @)}, we pick terms from
the entire corpus that are “equally” important as the terms
that have been dropped from Q. The importance depends on
the distribution of the term: the number of term occurrence
and the number of documents containing the term. We de-
fine a simple metric to measure the distribution of a term in
a corpus.

Distribution(t;) = Freq(t;) x Num(t;)

Here, Freq(t;) is the total term frequency of term ¢; in
all documents and Num/(t;) is the number of documents
containing term ¢;. The two factors are used to measure
the importance of the term. The reason we do not use
the conventional term weight formula TF - IDF is that
it can only represent the weight of a term in a document.
Distribution(t;) focuses more on the distribution of a term
in the corpus. Given a term in Q — @}, we find the top S
similar terms and choose one of them randomly to replace

mo [JO[O] Jol T [IOl [[]of]

w, [TORT T IOl T IR T T 10l
w, (XL A T TR T T 10
w, (XTI T TR

Figure 3. Defining relevant documents.

the old term. Here, the difference between two terms ¢; and
t; is measured by |Distribution(t;) — Distribution(t;)]
(the smaller the value is, the more similar they are). In our
study, S is set to 5. All terms in Q% are selected randomly
from the replaced terms in @ — Q.

Phase 2: Identifying Relevant Documents. In phase 2,
the relevant documents of the generated queries are defined
based on the relevant documents of the original queries. We
now define some documents as relevant answers to the new
queries. A new query ought to share some relevant docu-
ments with the original query and have some new relevant
documents for itself. With the centralized system, we can
calculate the ranked list, RL for the original query (), and
RL’ for a new query ', over all the documents. The top
E documents in the ranked lists are considered when defin-
ing relevant documents for Q. Some relevant documents
will never be returned to users because their ranks are very
low and users are usually interested in a small number of re-
sults only. Thus, they will not affect the precision or recall
and are not considered when defining relevant documents
for the new queries. For each such document in RL’ and
relevant to (), we define it as relevant to) and mark the
relevant document in R L with the most similar rank. Then,
for each unmarked relevant document in RL, the document
in RL’ with the same rank is defined as relevant to Q’. An
example is shown in Figure 3. Here, RL is the ranked list
to an original query), and RL,, RL5 and RLj3 are the new
ranked lists for new queries @1, Q2 and @5 derived from Q).
Circles are the original relevant documents to () and crosses
are newly defined relevant documents. The left most doc-
ument has the highest rank. In this example, £ = 14 (In
the experiments, £ = 1000). For ()1, 3 original relevant
documents (marked with circles) are in its top E ranked
list. Three documents in RL with the most similar ranks
are marked (indicated by the dashed lines). For the remain-
ing two relevant documents, two documents in RL; with
the same ranks are defined as relevant to ()1 (marked with
crosses). In this way, the distribution of the new relevant
documents is similar to the distribution of the original rele-
vant documents.

6.2. Experimental setup

We started with 63 queries from the TREC9 dataset, so
we eventually have 630 queries with the overlap ratio O =

70% after the query generation. We split these queries into
2 equal groups: a training set and a testing set. The queries
are randomly assigned to the groups. For each query in the
training set, the keywords are inserted into SPRITE. Next,
we insert the metadata of the documents into the system as
follows. For each document to be inserted, 5 most frequent
terms are initially indexed. Following the 5 initial terms, 3
iterations of learning are executed by the owner peer of a
document. In each iteration, 5 new terms are indexed. So
the total number of terms indexed equal to 20. Once all
the documents have been indexed, we run the queries in the
testing set. For each query, we retrieve top 20 answers and
determine its precision and recall. For eSearch, we set the
number of indexed terms as 20. In the above description,
the parameters used (e.g., S initial terms), are the default
settings. Unless otherwise stated, we assume the default
settings.

6.3. Experimental results

First, we compare the precision and recall between
SPRITE and eSearch when the number of answers varies.
As shown in Figure 4(a), the eSearch system outperforms
SPRITE when the number of answers is small (5-10); but
SPRITE gives better performance when the number of an-
swers is larger (15-30). Both eSearch and SPRITE are
not as good as the centralized system, which is the price
for indexing 20 terms only. Some relevant documents are
missed due to some unindexed terms. We also observe that
SPRITE’s precision of 89% and recall of 87% are relatively
constant with respect to the centralized scheme. The eS-
earch system degrades much faster when the number of an-
swers is larger. The terms indexed in SPRITE are more rep-
resentative for the documents because it is able to learn from
past queries. Therefore, SPRITE can perform constantly
well when the number of answers increases; the most fre-
quent terms indexed in eSearch can only benefit a small
fraction of documents in the collection.

Next, we vary the number of terms indexed. Figure 4(b)
shows the results of two sets of queries: “w/o-r” (without
repeats), where every query appears exactly once and “w-
zipf” (with Zipfian distribution, whose slope is set to 0.5),
where the frequency of a query is roughly inversely pro-
portional to the popularity of the query. The “w/o-r”” query
set is an extreme case that is biased against SPRITE. Most
queries are repeated as we mentioned previously and the
phenomenon is shown in [19] and [14]. SRPITE can obtain
the least knowledge from the past queries in this case. Note
that when 5 terms are initially indexed, no learning process
is involved, so the two systems have the same performance.
First, we observe that SPRITE outperforms eSearch with
the same number of terms indexed. In fact, the gain over
eSearch is larger with fewer terms indexed (except when

08 08

0.6 E
SPRITE-precision —>—

eSearch-precision —*-—- |
SPRITE-recall —=—
. eSe':irch—rlecall . ,,,9;,,

0.6

05 |

Ratio over centralized system
o E
~
T
1
Ratio over centralized system

05175

SPR ,l’f—precision w-zipf —<—
eSegfch-precision w-zipf ---%---
ITE-precision w/o-r —&—
eSIearchl—precilsion \Izvlo—rI e

0.8 |

o6 | & _

SPRITE-precision —<—

eSearch-precision ---%---
SPRITE-recall —&—]|

eSearch-recall ---o---
1 1 1 1 1 1 1 1

05

1
Ratio over centralized system

0.4 L 0.4
5 10 15 20 25 30 5

Number of answers

(a) Varying number of answers.

10

Number of terms indexed

(b) Varying number of index terms.

0.4 L
12345678910

Number of iterations

15 20 25 30

(c) Change on query pattern.

Figure 4. Comparison between SPRITE and basic eSearch on Effectiveness

the number of terms is 5). Second, SPRITE can achieve
similar performance as eSearch with fewer terms. For ex-
ample, the performance of SPRITE with only 20 terms in-
dexed is nearly the same as that of eSearch with 30 terms
indexed. This is very important and useful in a P2P system
since indexing fewer terms means lower cost for inserting
the global index terms initially as well as for maintaining
the index subsequently. This also suggests that many fre-
quent terms indexed by eSearch do not contribute to answer-
ing queries. Instead, SPRITE successfully removed these
redundant terms. Lastly, under the circumstance that either
queries do not even repeat (‘“w/o-1”") or queries are issued in
a very skewed distribution (“w-zipf”’), SPRITE always out-
performs eSearch. SPRITE can sufficiently learn the key
meanings of a document from similar queries or identical
queries. We observe similar trend for recalls and do not
present the results due to the space limitation.

Finally, we study SPRITE’s robustness to changes in
query access patterns, e.g., users may be interested in one
collection of documents in a period and then in another col-
lection later. Figure 4(c) depicts the precision and recall
when query pattern changes. The query set is evenly par-
titioned into two groups such that all new queries and their
corresponding original query are in the same group. In the
first 5 learning iterations, queries in one group are processed
and evaluated. In the next 5 iterations, the other group of
queries are processed and evaluated. Thus, in the first 5 it-
erations, none of the queries in the second group is known to
the system. In this set of experiments, we set the maximum
number of terms to index to 30, after which the number of
indexed terms remains unchanged. Instead, we apply term
replacement (as described in Algorithm 1) only. This is also
the reason the performance of eSearch remain unchanged
after iteration 6. SPRITE always outperforms eSearch as
usual when the number of indexed terms increases in the
first 5 iterations. From the 6th iteration, new queries are is-

sued in the system. As can be seen from the results, SPRITE
adapts to the changes very quickly. The precision and recall
decrease a little bit at the beginning of the new queries ar-
rival, but are still better than those of eSearch. After just one
iteration, SPRITE recovers and gives good performance in a
stable status. The reasons are twofold: The first 5 iterations
mainly polish the indices of related documents based on the
first group of queries. They have very little effect on the
later queries and their relevant documents. When the new
queries are issued (in the 6th iteration), the terms indexed
(based on the first group of queries) are unable to provide
adequate relevant documents. However, SPRITE’s learn-
ing capability ensures that the indices are carefully tuned to
meet the new set of queries in the following iterations.

7. Discussion and future work

SPRITE offers an effective learning mechanism for sup-
porting text retrieval in DHT-based P2P networks. In this
section, we discuss how some other features, many of these
are orthogonal to our work, can be easily incorporated into
SPRITE to further enhance its capabilities and robustness.

First, peers can join and leave the network when some
queries are being processed. There are two methods to pre-
vent query failure from peer failure. If a peer responsible for
a term is “down” and a query containing the term is issued
during this period, then the term can be discarded when cal-
culating the ranked list in the querying peer. However, such
a query will not be answered accurately if the term happens
to be dominant. A second approach to reduce the “damage”
from peer failure is replication. In SPRITE, we can repli-
cate the indexes of a peer in its successor peers periodically.
With these two schemes, peer failure will have little impact
in SPRITE. This is because the probability is very small that
the index of a document containing a dominant query term
is not replicated when the query is issued and the original

peer responsible for the term fails, even if the index repli-
cating period is long. In fact, SPRITE has the additional
advantage that only a small number of terms are replicated.

Second, it is possible for a peer to become overloaded.
There are two scenarios of unbalanced load in SPRITE.
(a) An indexing peer indexes some popular terms (i.e., terms
that appear in many documents), which means many owner
peers will frequently poll the indexing peer to maintain the
index and/or check if the peer is still active. As such, the in-
dexing peer will be busy with these requests. We note that
a popular term has a very high document frequency, which
leads to a small IDF'. Therefore, the term will contribute
little in the similarity calculation. Thus, a simple solution is
to advise the document owner peers that the term has a high
document frequency. The document owner peers can then
discard the term and pick an analogously important term
to index. The overhead is very small since it only requires
one communication. (b) During query processing, popu-
lar terms/documents are queried by many users. As such,
the indexing and owner peers may become a bottleneck.
Some techniques such as LAR [6] and Range-partition [3]
can be easily adapted. Popular documents can be repli-
cated in other peers to reduce the load of the owner peer.
A hot term can be cached in peers responsible for the terms
that always appear with it in some queries as in LAR. When
routing/processing a query, the indexing peer also needs to
check the cached indexes. If an entry is found in the cache,
then the peer responsible for the hot term will not be con-
tacted. If a peer is responsible for indexing many terms,
then it can invite an underloaded peer to share the range it
is responsible for as in Range-partition. The invited peer
passes over its original partition to its successor and shares
a range with the overloaded peer.

Finally, a common technique used in distributed infor-
mation retrieval is query expansion where extra terms are
added to a query. In [11], various query expansion methods
for distributed information retrieval are discussed. Since
cooperation among peers is not as close as in a distributed
system (with a small number of servers), local context anal-
ysis technique can be employed in SPRITE. In local con-
text analysis, global information is not required. Nouns are
extracted and the co-occurrence of nouns in a document is
analyzed. Queries are enriched accordingly.

8. Conclusion

This paper presents the design and evaluation of
SPRITE, a P2P keyword search system, with the follow-
ing features. First, only a small number of selected terms of
a document are indexed. This is extremely important in a
P2P system, not only for index construction and update, but
also because periodic checking on distributed indexes is re-
quired. Second, SPRITE uses progressive learning to refine

the set of selected index terms. Our extensive simulation
study showed that SPRITE can achieve performance simi-
lar to a centralized system in terms of precision and recall,
and considerably outperforms a static index term selection

approach.

Acknowledgement: Kian-Lee Tan and Yingguang Li are par-
tially supported by a university research grant R-252-000-237-
112. H.V. Jagadish is supported in part by NSF grant IIS-0219513.

References

[1] J. Aspnes and G. Shah. Skip graphs. In SODA’03, 2003.
[2] A. Crespo and H. Garcia-Molina. Routing indices for peer-

to-peer systems. In ICDCS’02, July, 2002.

[3] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online bal-
ancing of range-partitioned data with applications to peer-to-
peer systems. In VLDB’04, 2004.

[4] O. D. Gnawali. A keyword-set search system for peer-to-
peer networks.pdf. In Master thesis. Massachusetts Institute
of Technology, 2002.

[5] Gnutella Development Home Page.
http://gnutella.wego.com/.

[6] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Kele-
her. Adaptive replication in peer-to-peer systems. In
ICDCS’04, 2004.

[7]1 W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed:
An interactive retrieval evaluation and new large test collec-
tion for research. In SIGIR’94, 1994.

[8] D.L. Lee, H. Chuang, and K. Seamons. Document ranking
and the vector-space model. /IEEE Software, 1997.

[9] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger,
and R. Morris. On the feasibility of peer-to-peer web index-
ing and search. In IPTPS, 2003.

[10] J. Lu and J. Callan. Content-based retrieval in hybrid peer-
to-peer networks. In CIKM’03, 2003.

[11] P. Ogilvie and J. Callan. The effectiveness of query expan-
sion for distributed information retrieval. In CIKM’01, 2001.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In SIG-
COMM’01, 2001.

[13] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword
searching. In Proceedings of the International Middleware
Conference, June, 2003.

[14] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz.
Analysis of a very large alta vista query log. In Digital Sys-
tem Research Center, Technical Report 1998-014, Oct, 1998.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In SIGCOMM’01, 2001.

[16] C. Tang and S. Dwarkadas. Hybrid global-local indexing
for efficient peer-to-peer information retrieval. In NSDI'04,
2004.

[17] C. Tang, S. Dwarkadas, and Z. Xu. On scaling latent se-
mantic indexing for large peer-to-peer systems. In SIGIR’04,
2004.

[18] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks. In
SIGCOMM’03, 2003.

[19] Y. Xie and D. O’Hallaron. Locality in search engine queries
and its implications for caching. In InfoComm’02, July,
2002.

