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bstract. Image thresholding is a very common image processing
peration, since almost all image processing schemes need some
ort of separation of the pixels into different classes. In order to
etermine the thresholds, most methods analyze the histogram of
he image. The optimal thresholds are often found by either minimiz-
ng or maximizing an objective function with respect to the values of
he thresholds. By defining two classes of objective functions for
hich the optimal thresholds can be found by efficient algorithms,

his paper provides a framework for determining the solution ap-
roach for current and future multilevel thresholding algorithms. We
how, for example, that the method proposed by Otsu and other
ell-known methods have objective functions belonging to these
lasses. By implementing the algorithms in ANSI C and comparing
heir execution times, we can also make quantitative statements
bout their performance. © 2009 SPIE and IS&T.

DOI: 10.1117/1.3073891�

Introduction
n many image processing applications, the pixels need to
e classified as belonging to the foreground or the back-
round. The use of a threshold can often accomplish such a
ask. In multilevel image thresholding, pixels can be clas-
ified into many classes, not just foreground and back-
round. Because of its importance, image thresholding has
ttracted a considerable amount of attention. In Ref. 1, an
xtensive taxonomy and comparison of proposed methods
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009.
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is provided. Many methods define the optimal thresholds as
the ones that maximize or minimize an objective function.

One method to find the thresholds is exhaustive search,
which requires calculating the objective function for every
possible placement of the thresholds. Clearly, the problem
with this approach is that when the image is segmented into
more than two classes, the time needed to find the optimal
thresholds increases dramatically with the number of gray
levels and the number of classes.

In this paper, we provide a framework for determining
the solution approach for current and future multilevel
thresholding algorithms. More specifically, we define two
classes of objective functions for which the optimal thresh-
olds can be found by efficient algorithms. For the first class,
a dynamic programming �DP� algorithm, which has a sig-
nificantly lower time complexity than exhaustive search,
can be employed for finding the thresholds. While this al-
gorithm has been proposed in Ref. 2 for the thresholding
method by Otsu3 and in Ref. 4 for the method of Kittler and
Illingworth,5 we show that this DP algorithm can also be
employed for finding the optimal thresholds for the maxi-
mum entropy method by Kapur et al.6 For the second class,
we prove a theorem based on which more efficient algo-
rithms can be used for finding the optimal thresholds. These
algorithms consist of a combination of DP and fast matrix
searching that results in algorithms that have lower time
complexities than the DP algorithm and can be several or-
ders of magnitude faster. We show that the objective func-
tions of the method proposed by Otsu3 and the multilevel
thresholding extension of the method by Li and Lee are
Jan–Mar 2009/Vol. 18(1)1
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embers of the second class. Consequently, we can find the
ptimal thresholds for these methods much faster than the
reviously proposed DP algorithm in Ref. 2. �The multi-
evel extension of Ref. 7 and its solution are proposed here
or the first time.�

To verify the efficiency of the algorithms, execution
ime measurements of ANSI C implementations are pre-
ented. Note that the scope of this paper is not to analyze
he segmentation performance of different thresholding al-
orithms. We do not analyze the segmentation performance
ince the proposed algorithms provide the same optimal
esults as the original methods, simply much faster.

An earlier version of this work was presented in Ref. 8.
his paper is more comprehensive and contains new mate-

ial that has not been shown before. For example, in Sec. 3,
e show that the objective function of the Kapur method6

elongs to the first class of objective functions; in Sec. 5,
e analyze how the structure of the histogram influences

he execution time; and in the Appendix, we show the proof
f Theorem 1.

The paper is organized as follows: In Sec. 2, multilevel
mage thresholding is introduced and the problem is math-
matically defined. In Sec. 3, the first class of objective
unctions is defined and the DP algorithm that can be used
or finding the optimal thresholds is presented. In Sec. 4,
he second class of objective functions is defined and the
lgorithms combining DP and fast matrix searching are in-
roduced. In Sec. 5, execution time measurements of the
ifferent algorithms are presented. Last, the paper is sum-
arized and conclusions are drawn in Sec. 6.

Multilevel Image Thresholding

he pixels of a grayscale image are represented by L gray
evels g from 1 to L. Multilevel image thresholding is the
ask of separating the pixels of the image into M classes

1 . . .CM based on their values, by selecting the integer
hresholds t1 . . . tM−1. Class Ck is defined as Ck= �g � tk−1�g

tk�, where k� �i �1� i�M� refers to the class number.
he thresholds t0 and tM are defined to be equal to 0 and L,

espectively.
For the selection of the thresholds, most methods em-

loy the histogram of the image. The histogram h�g� shows
he number of occurrences of the gray level g in the image,
here �g=1

L h�g�=N, with N the total number of pixels in the
mage. The normalized histogram p�g�=h�g� /N can be
onsidered as an estimate of the probability mass function
f the gray levels present in the image.

For each class, statistical properties such as the probabil-
ty of the class �later called class weight�, the mean, and the
ariance of the class can be calculated as follows:

�tk−1,tk� = �
i=tk−1+1

tk

p�i� , �1�

�tk−1,tk� = �
i=tk−1+1

tk p�i� · i

w�tk−1,tk�
, �2�
ournal of Electronic Imaging 013004-
�2�tk−1,tk� = �
i=tk−1+1

tk p�i� · „i − ��tk−1,tk�…2

w�tk−1,tk�
. �3�

The thresholding methods considered in this paper result
from the optimization of an objective function. The optimal
thresholds are the ones that either minimize or maximize
the objective function. For the sake of conciseness and
without loss of generality, derivations are shown only for
the case where an objective function JM,L �to be defined
later� is maximized, i.e.,

�t1
*,t2

*, . . . ,t
M−1
* � = arg max„JM,L�t1, . . . ,tM−1�… , �4�

with the following ordering for the positions of the thresh-
olds:

0 � t1 � t2 . . . � tM−1 � L . �5�

The straightforward approach for finding the optimal
thresholds is an exhaustive search, i.e., evaluating the ob-
jective function for every possible combination of thresh-
olds. However, the number of possible combinations Q is
given by �it is assumed that M �L�:

Q = 	 L − 1

M − 1

 = �

i=1

M−1
L − i

M − i
� 	 L − 1

M − 1

M−1

. �6�

Therefore, an algorithm based on exhaustive search is suit-
able only for small numbers of gray levels and classes; it
quickly becomes unsuitable when the number of gray levels
or classes is increased. For example, an ANSI C implemen-
tation of an exhaustive search algorithm for the Otsu
method requires 42 ms for 128 gray levels and 4 classes.
When the number of classes is increased to 5, the execution
time increases to 1.8 s. For 256 gray levels, which is the
most common number of gray levels for images, the execu-
tion time is 350 ms and 28 s for 4 and 5 classes, respec-
tively. Note that this is several orders of magnitude slower
than the algorithms introduced in this paper. Please refer to
Sec. 5 for execution time measurements of the algorithms
proposed in this paper and information about where the
ANSI C source code �including exhaustive search algo-
rithm� can be found.

3 Dynamic Programming Solution
In this section, we consider multilevel image thresholding
algorithms that are based on dynamic programming �DP�.
We also show that DP can be employed for finding the
optimal thresholds for the maximum entropy method in
Ref. 6.

3.1 General Case
The required structure for the first class of objective func-
tions that accept a DP solution �also known as the shortest
path algorithm� for finding the optimal thresholds is the
following:

JM,L�t1, . . . ,tM−1� = �
k=1

M

l�tk−1,tk� , �7�

where l�tk−1 , tk� is referred to as the class cost of class Ck.
Hence, the class cost can depend only on its boundary val-
Jan–Mar 2009/Vol. 18(1)2
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es, namely, tk−1 and tk. A partial sum up to gray level l for
he first m classes is defined as

m�l� = �
k=1

m

l�tk−1,tk�, 1 � t1 � t2 � . . . � tm−1 � l . �8�

or every gray level l, a subproblem can be defined as
nding the optimal thresholds that partition the interval
1 , l� into m classes. The optimal solution to the subprob-
em is given by

m
*�l� = max

1�t1�. . .�tm−1�l
„Jm�l�… . �9�

y rewriting the optimal solution to the subproblem, the
ollowing recursive formulation is obtained:

m
*�l� = max

1�t1�. . .�tm−1�l
	�

k=1

m

l�tk−1,tk�
,

= max
1�t1�. . .�tm−1�l

	�
k=1

m−1

l�tk−1,tk� + l�tm−1,l�
,

= max
m−1�tm−1�l

„J
m−1
* �tm−1� + l�tm−1,l�… . �10�

y setting m=M and l=L, this equation provides the maxi-
um of the overall problem. It is clear that if the thresholds

f a subproblem are not chosen optimally �and therefore
hey are not maximizing the objective function for the sub-
roblem�, the overall objective function cannot attain its
aximum value. By having this recursive formulation, the

ptimal thresholds can be found by the shortest path algo-
ithm. Pseudocode for the algorithm is depicted in Algo-
ithm 1:

Algorithm 1: DPSEARCH�Trellis, M, L�
rellis�0,0� .Jª0

or mª1 to M do
for lªm to L−M−m do

Jmaxª−�

for each node in Trellis�m−1, : � do
gªgray level of node
JªTrellis�m−1,g� .J+��g , l�
if J�Jmax then

Trellis�m , l� .JªJ
Trellis�m , l� .posªg
JmaxªJ

end if
end for

end for
nd for

	 	 Backtracking
ªL
ªM
hile m�2 do
t
m−1
*

ªTrellis�m , l� .pos
lª t

m−1
*

mªm−1
nd while
eturn �t

1
* , t

2
* , . . . , t

M−1
* �

A trellis is employed to find the optimal thresholds. �A
pecific example for M =4, L=8 is shown in Fig. 1.� In the
seudocode, the trellis is represented by the data structure
ournal of Electronic Imaging 013004-
Trellis; a node at stage m and gray level l are accessed by
Trellis�m , l�. The algorithm proceeds from the bottom of
the trellis to the top and compares paths emerging from
nodes one stage below and to the left of the current node.
The maximal cost is stored in the node, and a back pointer
is set to point to the node from which the optimal path
emerges. When the algorithm arrives at the end node, the
optimal thresholds are found by backtracking to the start
node.

Note that the amount of work the DP algorithm needs to
perform in the first stage of the trellis is the same as the
amount of work performed by an exhaustive search with
M =2. Consequently, the DP algorithm is more efficient
than an exhaustive search only when M �2. Since the num-
ber of stages is M, the number of nodes per stage equal to
�L−M +1�, and the number of paths that have to be com-
pared per node is proportional to L, the time complexity of
this algorithm is O�ML2�. This assumes that the class cost
l�tk−1 , tk� can be calculated in O�1� time. This can be the
case for many objective functions by introducing a prepro-
cessing step that requires O�L� time. �An example will be
shown in Sec. 3.2�. In Ref. 2, a dynamic programming
scheme based on Eq. �10� has been proposed for the thresh-
olding method by Otsu3 and in Ref. 4 for the minimum
error thresholding method by Kittler and Illingworth.5

The shortest path algorithm is also shown here because
it forms the basis of more efficient algorithms, which are
introduced in Sec. 4. Furthermore, we show that the DP
algorithm can be employed for finding the optimal thresh-
olds for the maximum entropy method by Kapur et al.,6 as
shown next.

3.2 Maximum Entropy Method
Numerous entropy-based thresholding methods have been
proposed. �A good overview can be found in Ref. 1.� With
the method proposed in Ref. 6, the classes are regarded as
separate signal sources. The optimal thresholds maximize
the sum of the class entropies, given by

JM,L�t1, . . . ,tM−1� = �
k=1

M

l�tk−1,tk� , �11�

where the class cost l�t , t � is defined as

1 2 876543

4

2

1

3

0

stage m

L

start

endM

gray level l

J∗
2 (2) J∗

2 (3) J∗
2 (4) J∗

2 (5) J∗
2 (6)

J∗
3 (4) J∗

3 (5) J∗
3 (6) J∗

3 (7)J∗
3 (3)

J∗
4 (8)

J∗
1 (1) J∗

1 (2) J∗
1 (3) J∗

1 (4) J∗
1 (5)

Fig. 1 Trellis for the shortest path algorithm for M=4, L=8.
k−1 k
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�tk−1,tk� = − �
i=tk−1+1

tk p�i�
w�tk−1,tk�

log	 p�i�
w�tk−1,tk�


 . �12�

hile the objective function for multilevel thresholding is
roposed in Ref. 6, no method for selecting the thresholds
aximizing the objective function is given. Clearly, the

lass cost depends only on tk−1 and tk. Therefore, the DP
lgorithm can be used to find the optimal thresholds. How-
ver, the time complexity of the DP algorithm is O�ML2�
nly if the class cost can be calculated in O�1� time. This is
ccomplished by precalculating and storing two arrays de-
ned as

�i� = �p�1� · log„p�1�… if i = 1,

H�i − 1� + p�i� · log„p�i�… if 2 � i � L ,
 �13�

�i� = �p�1� if i = 1,

W�i − 1� + p�i� if 2 � i � L .
 �14�

fter the arrays have been precalculated, which requires
�L� time, the class cost can be calculated as

�tk−1,tk� = log„W�tk� − W�tk−1�… −
H�tk� − H�tk−1�
W�tk� − W�tk−1�

. �15�

he time needed for this operation does not depend on tk−1
nd tk, which means that the time complexity is O�1�.
herefore, the optimal thresholds for the method proposed

n Ref. 6 can be found in O�ML2� time using DP.

More Efficient Solutions
s shown in the previous section, it is possible for some
ultilevel thresholding methods to employ a DP solution
ith time complexity O�ML2� to find the optimal thresh-
lds. However, the time needed to find the optimal thresh-
lds still increases quadratically with the number of gray
evels. In this section, we introduce solutions for finding the
ptimal thresholds more efficiently, given that the objective
unction has certain properties.

The problem of finding the optimal paths leading to all
he nodes in one of the stages 2 , . . . ,M −1 of the trellis is
quivalent to the problem of finding the row-wise maxima
n a lower triangular �L−M +1�
 �L−M +1� matrix A. At
tage m, the matrix is given by

�r,c�

= �− � , if c � r ,

J
m−1
* �c + m − 2� + l�c + m − 2,r + m − 1� , if c � r .


�16�

In this matrix, the cost of the paths up to all the nodes of
ne stage in the trellis are treated as matrix elements, where
he column c indicates the node from which the path
merges and the row r the node where the path ends. The
lements above the main diagonal of the matrix are defined
o be equal to −�, since there are no paths coming from
odes to the right or directly below the current node. We
an therefore replace the two inner for loops of the DP
lgorithm with a matrix searching algorithm that finds the
ow-wise maxima in A.
ournal of Electronic Imaging 013004-
If the matrix has no special properties, finding the row-
wise maxima in the lower triangular region requires calcu-
lating all the elements in the region, which is exactly the
same as the calculations performed in one stage of the DP
algorithm. Depending on the objective function, the matrix
can have properties that enable us to find the row-wise
maxima without calculating all elements, which results in a
reduced time complexity of the overall algorithm.

Assume that for some objective function, the class cost
l�tk−1 , tk� has the property

l�a,u� + l�b,v� � l�a,v� + l�b,u� ,

1 � a � b � u � v � L , �17�

which is known as convex quadrangle inequality. The in-
tervals used are illustrated in Fig. 2. If the class cost has
this property and we take four elements from the lower
triangular region of A such that 1�r1�r2�L−M +1 and
1�c1�c2�r1, it follows from Eqs. �16� and �17� that

A�r1,c1� + A�r2,c2� � A�r1,c2� + A�r2,c1� , �18�

which means that A is a lower triangular inverse Monge
matrix. Monge matrices have a range of properties that can
be exploited when performing combinatorial optimization;
refer to Ref. 9 for a thorough discussion of this subject. For
the problem at hand, the monotonicity of A can be ex-
ploited to find the maxima more efficiently. Assume that we
know A�r1 ,c1��A�r1 ,c2�; using Eq. �18�, it is easy to show
that this implies A�r2 ,c1��A�r2 ,c2�, which means that, A
is totally monotone.

The row-wise maxima of a totally monotone matrix can
be found using matrix searching algorithms. Note that the
matrix introduced here is a theoretical construct, and it is
not necessary to calculate it before executing the matrix
searching algorithm. �Doing so actually would not result in
a reduced time complexity.� If a matrix searching algorithm
needs a specific element of the matrix, it uses the cost
stored in a node of the trellis and the objective function, as
given by Eq. �16�, to calculate it.

4.1 Divide-and-Conquer Algorithm
The divide-and-conquer algorithm exploits the fact that A
is monotone, which means that

cmax�r1� � cmax�r2�, 1 � r1 � r2 � m , �19�

where cmax�r� denotes the column index of the leftmost
element containing the maximum value of row r. That A is
monotone follows directly from the total monotonicity. As-
sume that cmax�r1��cmax�r2� for some 1�r1�r2�m. The
total monotonicity implies that

1 Lb

�(a, u]

�(b, v]

�(b, u]

u v

�(a, v]

a

Fig. 2 Intervals of the convex quadrangle inequality.
Jan–Mar 2009/Vol. 18(1)4
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„r2,cmax�r2�… � A„r2,cmax�r1�… , �20�

hich contradicts the fact that cmax�r2� is the column index
f the maximum in row r2.

When the divide-and-conquer algorithm is used
o find the row-wise maxima of an m
n matrix A,
t first searches for the maximum in the middle row
= �m /2� of the matrix, and it is then recursively applied
n the submatrices A(1, . . . ,r−1;1 , . . . ,cmax�r�) and
(r+1, . . . ,m ;cmax�r� , . . . ,n), as shown by the pseudocode

n Algorithm 2. The algorithm is started by calling
IVCONQ�A ,0�, and it obtains a vector MAX containing

he maxima positions. The time complexity of this algo-
ithm can be found using the recursion tree method.10 The
orst-case execution time of the algorithm can be written

s:

�m,n� = �cn , if m = 1,

2T�m/2,n/2� + cn , if m � 1,
 �21�

here c is a constant time needed to evaluate an element of
he matrix. As the recursion depth is log2�m� and the accu-
ulated execution time across all branches at each level of

he tree is cn, the time complexity of the algorithm is
�n log m�.
When this algorithm is combined with the DP algorithm,

he divide-and-conquer algorithm is executed once for each
tage 2 , . . . ,M −1 of the trellis. As the matrix has a size of
L−M +1�
 �L−M +1� and we assume that the class cost
an be calculated in O�1� time, the resulting time complex-
ty is O�ML log L�.

Algorithm 2: DIVCONQ�M, offset�
m ,n�ªsize of M �rows, columns�
ª �m /2�
ªposition leftmost maximum in row r of M
AX�offset+ r�ª j �store position�

f m=1 then
return

lse
if r�1 then

PªM�1. . . r−1,1. . . j�
DIVCONQ�P, offset�

end if
QªM�r+1. . .m , j . . .n�
DIVCONQ�Q ,offset+ r�

nd if

.2 SMAWK Algorithm
nother algorithm, which exploits not only the monotonic-

ty but also the total monotonicity of the matrix, is known
s the SMAWK algorithm.11 Like the divide-and-conquer
lgorithm, the SMAWK algorithm is recursive, but the total
onotonicity of the matrix makes it possible to find the

ow-wise maxima of an m
n matrix �m�n� in O�n� time.
seudocode of the SMAWK algorithm is shown in Algo-
ithm 3. The algorithm consists of three functions and is
tarted by calling SMAWK�A�. The function REDUCE
orms a central part of the algorithm; it removes n−m col-
mns that do not contain row maxima from the matrix. The
EDUCE function can do so in O�n� time; please refer to
ef. 11 for the derivation of the time complexity of the
ournal of Electronic Imaging 013004-
SMAWK algorithm. By calling the function REDUCE, the
initial problem is transformed into the problem of finding
the row-wise maxima in an m
m matrix. The maxima in
the even-numbered rows are found by calling SMAWK re-
cursively on a matrix containing only the even-numbered
rows. The maxima in the odd-numbered rows are found by
the function MFILL, which can be done very efficiently
since the maxima in the even-numbered rows have already
been found.

By combining the DP and the SMAWK algorithms, the
optimal thresholds are found in O�ML� time, where it is
again assumed that the class cost can be calculated in O�1�
time.

Algorithm 3: SMAWK �M�
PªREDUCE�M�
if P is size 1
1 then

P is a maximum in the initial matrix, store
position
return

end if
Qªmatrix with even-numbered rows of P
SMAWK �Q� �recursive call�
MFILL�P,Q� �maxima in odd-numbered rows�

REDUCE �M�
�m ,n�ªsize of M �rows, columns�
kª1
while M has more columns than rows do case

M�k ,k��M�k ,k+1� and k�m:
mªm+1

M�k ,k��M�k ,K+1� and k=m:
Delete column k+1 of M

M�k ,K��M�k ,k+1�:
Delete column k of M
if k�1 then

kªk−1
end if

end case
end while
return M

MFILL �P ,Q�
�m ,n�ªsize of P �rows, columns�
MPOS �2,4, . . . ,2�m /2��ªpos. maxima in even-

numbered rows of P, known from Q
MPOS �0�ª1 MPOS�m+1�ªn
for iª1. . . �m /2� do

rª2i−1
maxª−�

for cªMPOS�r−1� . . .MPOS�r+1� do
if P�r ,c��max then

maxªP�r ,c�
MPOS �r�ªc

end if
end for

end for

4.3 Objective Functions for Efficient Multilevel
Thresholding

In this section, a class of objective functions that fulfill the
convex quadrangle inequality and have class costs that can
be calculated in O�1� time is introduced. Consequently, if
the objective function of a multilevel thresholding method
belongs to this class, it is possible to find the optimal
Jan–Mar 2009/Vol. 18(1)5
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hresholds in O�ML� time. It will be shown in this section
hat the objective functions of two well-known methods are
embers of this class.
The objective function for this class is calculated as the

um over M classes, as defined in Eq. �7�. Furthermore, the
lass cost must have the structure introduced in the follow-
ng theorem.

Theorem 1: A class cost l�p ,q� of the form

�p,q� = w�p,q� · f	�p�i�qp�i� · ��i�
w�p,q� 
 , �22�

here w�p ,q� is the class weight �probability of the class�,
f�·� is a convex function on the interval ���1� ,��L��, and
unction ��·� is either monotonically increasing or decreas-
ng on the interval �1,L�, fulfills the convex quadrangle
nequality.

Please refer to the Appendix for the proof of this theo-
em.

As with the maximum entropy method, it is possible to
recalculate and store two arrays, which enables us to cal-
ulate the class cost in O�1� time. These two arrays are
efined as

�i� = �p�1� · ��1� , if i = 1,

N�i − 1� + p�i� · ��i� , if 2 � i � L ,
 �23�

�i� = �p�1� , if i = 1,

W�i − 1� + p�i� , if 2 � i � L .
 �24�

oth arrays are L elements long, thus calculating and stor-
ng their values requires O�L� time. After the arrays have
een precalculated, the class cost l�p ,q� can be calculated
s follows:

�p,q� = �W�q� − W�p�� · f	 N�q� − N�p�
W�q� − W�p�
 . �25�

In the following, it is shown that two existing threshold-
ng methods have objective functions that belong to the
lass introduced in this section.

.3.1 Example A: The Otsu method
he method proposed by Otsu3 is one of the most refer-
nced thresholding methods. Also numerous methods for
mproving the time efficiency of the multilevel case have
een suggested. As mentioned earlier, a DP-based solution
ith time complexity O�ML2� has been proposed in Ref. 2.

n Ref. 12, the execution time of the exhaustive search is
educed by precalculating and storing all possible class
osts. In addition, various iterative methods have been pro-
osed. For example, in Ref. 13, the pairwise nearest neigh-
or method; in Refs. 14 and 15, the zeros of the partial
erivatives of the objective function; and in Ref. 16, the
elder-Mead simplex search combined with particle swarm
ptimization are used to find the thresholds. However, it is
ifficult to specify an upper bound on the execution time
or these methods because it is not guaranteed that they
onverge to the optimal thresholds within a given number
f iterations.
ournal of Electronic Imaging 013004-
The optimal thresholds for the method proposed by Otsu
are found by minimizing a criterion called within-class
variance, which is defined as follows:

�W
2 = �

k=1

M

w�tk−1,tk� · �2�tk−1,tk� , �26�

=�
k=1

M

�
i=tk−1+1

tk

p�i� · „i − ��tk−1,tk�…2. �27�

An equivalent problem is encountered when designing
an optimal scalar quantizer. An M-level scalar quantizer
assigns to each input value one of M reconstruction values.
When the input values are discrete values in the range
1 . . .L, the quantizer is fully specified by a set of M −1
interval boundaries 0� t1� t2 . . . � tM−1�L and a set of M
reconstruction values r1�r2 . . . �rM. The quantizer assigns
the reconstruction value rk to input values in the interval
�tk−1 , tk�, where t0=0 and tM =L. An optimal scalar quan-
tizer uses a set of interval boundaries and reconstruction
values such that the mean squared quantization error �MSE�
is minimal.17 The MSE is given by

MSE = �
k=1

M

�
i=tk−1+1

tk

p�i� · �i − rk�2. �28�

It can be shown that the reconstruction values have to be
the centroids of the corresponding intervals, i.e., rk
=��tk−1 , tk�, for the quantizer to be optimal. Therefore, the
problem of designing an optimal scalar quantizer is equiva-
lent to finding the Optimal thresholds for the Otsu method.

Wu showed in Refs. 18 and 19, that the optimal quan-
tizer can be found in O�ML log L� and O�ML� time, respec-
tively, by employing algorithms combining DP and divide-
and-conquer or SMAWK matrix searching. Note that the
result that algorithms for scalar quantizer design with
O�ML� time complexity can be used to find the optimal
thresholds for the Otsu method has also been found inde-
pendently by Virmajoki.20

The fact that the optimal thresholds for the Otsu method
can be found in O�ML� time can also be seen when another
objective function, called modified between-class variance
in Ref. 12, is used. Maximizing this objective function re-
sults in the same thresholds as minimizing �26�. The class
cost of this objective function is defined as

l�p,q� = w�p,q� · „��p,q�…2. �29�

Note that the class cost has the form given in Eq. �22�;
therefore, it fulfills the convex quadrangle inequality, and
the optimal thresholds can be found in O�ML� time.

4.3.2 Example B: The minimum cross entropy
method

For the minimum cross entropy method proposed in Ref. 7,
the optimal threshold is the one that minimizes the cross
entropy between the image and its binarized version, given
by
Jan–Mar 2009/Vol. 18(1)6
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�t� = �
i=1

t

h�i�i log	 i

��0,t�
 + �
i=t+1

L

h�i�i log	 i

��t,L�
 , �30�

here it is assumed that the means of the two classes are
he reconstruction values in the binarized image. It is
traightforward to extend this method to multiple thresh-
lds, and as with the Otsu method, the optimal thresholds
an also be found by maximizing a modified objective
unction. The class cost of this objective function is given
y

�p,q� = w�p,q� · ��p,q� · log„��p,q�… . �31�

bviously, this class cost has the form given in Eq. �22�,
hich means that the optimal thresholds can be found in
�ML� time.

Execution Time Measurements
n this paper, three different algorithms for efficient multi-
evel thresholding have been presented. Their time com-
lexities of O�ML2�, O�ML log L�, and O�ML� provide an
pper bound for their execution time. It is clear that the
lgorithm that combines DP and SMAWK matrix searching
nd has a time complexity of O�ML� outperforms the other
lgorithms if L and M are sufficiently large. However, from
he time complexity measure alone, it is not possible to say
hich algorithm is the fastest for a certain combination of

M and L, because the constant factors are unknown.
Quantitative statements about the performance of the al-

orithms can be made by implementing them and compar-
ng their execution times. The implementations are made
or the thresholding method proposed by Otsu.3 In order to
ave efficient implementations, ANSI C is used, and no
emory is allocated dynamically during the execution of

he algorithms. The implementation of the SMAWK algo-
ithm using a low-level programming language like ANSI

is quite involved. In fact, only implementations using
igh-level languages such as Java or Python can be found
n the Internet. For the implementation of the SMAWK
lgorithm, modifications proposed in Ref. 21 proved to be
elpful. For more details, please refer to the source code of
he implementations used in this work, which is available
nline. �The source code of the implementations used in
his work is available at http://ivpl.eecs.northwestern.edu/
esearch/projects/thresholding.� The presented execution
imes were obtained by running the algorithms on a PC
ith a Pentium 4 2.8-GHz processor.
Since most grayscale images contain 256 gray levels, the

xecution times for this number of gray levels are of par-
icular interest. The measured times for the different algo-
ithms are shown in Fig. 3. The histogram of the Lena
mage �converted to gray scale� is used for the measure-

ents. Note that the execution time of all algorithms is
roportional to the number of classes. The algorithms that
ombine DP and matrix searching are both more than 10
imes faster than the normal DP algorithm. Even though it
as a higher time complexity, the algorithm that uses
ivide-and-conquer matrix searching is slightly faster than
he algorithm that employs SMAWK. This may be ex-
lained by the overhead incurred by the complex structure
f the SMAWK algorithm. As noted previously, our algo-
ithms are optimal and they obtain the same thresholds as
ournal of Electronic Imaging 013004-
the original method by Otsu,3 and analyzing the segmenta-
tion performance of various methods is not within the
scope of this paper. However, we show an example seg-
mentation of the Lena image obtained by the Otsu method
with M =5 in Fig. 4�b�, where the pixels of each class are
set to the mean gray level of the corresponding class.

When the number of gray levels is increased, the advan-
tage of using an efficient matrix searching algorithm be-
comes more significant, as shown in Fig. 5. The histograms
used for measurements with more than 256 gray levels are
interpolated versions of the histogram of the Lena image.
For M =5 and L=216, the normal DP algorithm requires
about 218 s to find the optimal thresholds, whereas the ex-
ecution times of the faster algorithms are around 100 ms.
The difference between the algorithm that combines DP
and divide-and-conquer matrix searching and the one that
uses a combination of DP and SMAWK is shown in Fig. 6.
It can be seen that the execution time of the algorithm that
uses divide-and-conquer grows faster than linear, while the
execution time of the algorithm that uses SMAWK is pro-
portional to the number of gray levels, as theoretically pre-
dicted. Note that the algorithm that uses SMAWK requires
only about 1.5 s to find the optimal thresholds for M =5 and
L=220, while the normal DP algorithm would need about
15 h. Employing an algorithm based on an exhaustive
search, as proposed in Ref. 12, is literally impossible for
this combination of M and L—it would require millions of
years for finding the optimal thresholds! Some of the mea-
sured execution times and the relative speedup to the DP
algorithm are shown in Table 1.

An interesting question is how the structure of the his-
togram influences the execution time of the algorithms. It is
easy to see that the amount of work the DP algorithm in-
troduced in Sec. 3 needs to perform depends only on M and
L and not on the structure of the histogram. Therefore, after
the histogram has been calculated, the execution time will
be the same for all images that have the same number of
gray levels. On the other hand, the execution time of the
matrix searching algorithms depends on the structure of the
matrix. Consequently, the execution time of the algorithms
combining DP and matrix searching will be influenced by
the histogram. Three different histograms have been used
for measurements, the first is from the Lena image, the
second is from the Fishing Boat image, and the third is
randomly generated. This means that a random number in
the interval �0, 1� is used as the probability for each gray
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Fig. 3 Execution times for L=256, M=1, . . . ,5.
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evel, and p�i� is then scaled such that w�0,L�=1. The ex-
cution times for these histograms are shown in Figs. 7 and
.

As can be seen from these measurements, the execution
imes are slightly higher when random histograms are used,
nd the structure of the histogram influences the execution
ime of the algorithm using SMAWK more than that of the
lgorithm using divide-and-conquer. We found that the ex-
cution times using random histograms are close to the
orst-case execution times, which means they can be used

s an upper bound when the algorithms are used in real-
ime systems.

Summary and Conclusions
n this paper, we provide a framework for finding the solu-
ion approach of multilevel thresholding algorithms by de-
ning two classes of objective functions for which the op-

imal thresholds can be found by efficient algorithms. In
rder for an objective function to belong to the first class,
he class cost can depend only on its boundary values, as
as shown in Sec. 3. We show that a DP scheme can be
sed for finding the optimal thresholds for this class of
bjective functions. Even though DP has been proposed in
ef. 2 for the method by Otsu3 and in Ref. 4 for the method
f Kittler and Illingworth.5 it does not seem to be widely
nown. For example, for the method proposed in Ref. 6, we
how that the optimal thresholds can be found by employ-
ng a similar DP algorithm with time complexity O�ML2�.

e define the second class of objective funcitons in Theo-
em 1. For objective functions belonging to this class, more
ophisticated algorithms18,19 from the field of optimal scalar
uantization can be employed. As it turns out, Otsu’s
ethod also belongs to this second class and so does the
ultilevel extension of the minimum cross entropy method

(a) (b)

ig. 4 Original �a� and segmentation �b� with M=5; thresholds:
1=46, t2=83, t3=118, and t4=163.
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Fig. 5 Execution times for L=28, . . . ,216; M=5.
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proposed in Ref. 7. Hence, we show that the optimal
thresholds for the important Otsu method can be found in
O�ML� time. However, we note that this result has also
been found independently by Virmajoki.20 Depending on
the number of gray levels L and classes M, this results in a
speedup of several orders of magnitude relative to previ-
ously reported DP algorithms with time complexity
O�ML2�.

By comparing the execution times of actual implemen-
tations, we can make quantitative statements about the ef-
ficiency of the algorithms. The measured execution times
are consistent with the theoretically derived time complexi-
ties.

Appendix: Proof for Theorem 1
In the following, we prove Theorem 1 for monotonically
increasing functions ��·�; the proof for monotonically de-
creasing functions can be found by a symmetric argument.
Our proof follows closely the proof of Ref. 22 �Theorem
3.6�.

Proof: Every function ��·�, which is monotonically in-
creasing on the interval �1,L�, maps the values 1�a�b
�u�v�L to the values ��1����a����b����u����v�
���L�. In the following derivations, the argument of the
function f�·� is denoted as

�p�i�qp�i� · ��i�
w�p,q�

= ���q,p� . �32�

Since the mean ��p ,q� is monotonically nondecreasing in
p and q and the function ��·� is monotonically increasing,
the function ���q , p� is also monotonically nondecreasing
in p and q. Therefore, we have

���a,�� � ����b,u�,���a,v�� � ���b,v� . �33�

The values ���b ,u� and ���a ,v� can be obtained by a lin-
ear combination of ���a ,u� and ���b ,v�,
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Fig. 6 Execution times for L=28, . . . ,220; M=5.
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Fig. 7 Execution time DP combined with divide-and-conquer; M=5.
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��b,u� = ���a,u� + �1 − ����b,v� , �34�

��a,v� = ����a,u� + �1 − �����b,v� , �35�

here the coefficients  and � are given by

=
���b,v� − ���b,u�
���b,v� − ���a,u�

, �36�

=
���b,v� − ���a,v�
���b,v� − ���a,u�

. �37�

ince the function f�·� is convex, upper bounds for l�b ,u�
nd l�a ,v� can be found as

�b,u� � w�b,u� · �f„���a,u�… + �1 − �f„���b,v�…� , �38�

�a,v� � w�a,v� · ��f„���a,u�… + �1 − ��f„���b,v�…� . �39�

e prove that the class cost �22� fulfills the convex quad-
angle inequality by showing that 0 is a lower bound for d,
hich is defined as

= l�a,u� + l�b,v� − l�b,u� − l�a,v� . �40�

uch a lower bound is found by substituting the upper
ounds for l�b ,u� and l�a ,v� into Eq. �40�; after rearrang-
ng terms, it results in

� � · f„���a,u�… + � · f„���b,v�… , �41�

here � and � are given by

= w�a,u� − w�b,u� − �w�a,v� , �42�

Table 1 Execution tim

L DP D

256 3.21 ms 1 0.

16384 13.8 s 1 29

65536 218 s 1 13
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Fig. 8 Execution time DP combined with SMAWK; M=5.
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� = w�b,v� − �1 − �w�b,u� − �1 − ��w�a,v� . �43�

A rather long, but simple, computation reveals that �=0 and
�=0, which means that

l�a,u� + l�b,v� − l�b,u� − l�a,v� � 0, �44�

and proves Theorem 1.
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