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Abstract. /Image thresholding is a very common image processing
operation, since almost all image processing schemes need some
sort of separation of the pixels into different classes. In order to
determine the thresholds, most methods analyze the histogram of
the image. The optimal thresholds are often found by either minimiz-
ing or maximizing an objective function with respect to the values of
the thresholds. By defining two classes of objective functions for
which the optimal thresholds can be found by efficient algorithms,
this paper provides a framework for determining the solution ap-
proach for current and future multilevel thresholding algorithms. We
show, for example, that the method proposed by Otsu and other
well-known methods have objective functions belonging to these
classes. By implementing the algorithms in ANSI C and comparing
their execution times, we can also make quantitative statements
about their performance. © 2009 SPIE and IS&T.

[DOI: 10.1117/1.3073891]

1 Introduction

In many image processing applications, the pixels need to
be classified as belonging to the foreground or the back-
ground. The use of a threshold can often accomplish such a
task. In multilevel image thresholding, pixels can be clas-
sified into many classes, not just foreground and back-
ground. Because of its importance, image thresholding has
attracted a considerable amount of attention. In Ref. 1, an
extensive taxonomy and comparison of proposed methods
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is provided. Many methods define the optimal thresholds as
the ones that maximize or minimize an objective function.

One method to find the thresholds is exhaustive search,
which requires calculating the objective function for every
possible placement of the thresholds. Clearly, the problem
with this approach is that when the image is segmented into
more than two classes, the time needed to find the optimal
thresholds increases dramatically with the number of gray
levels and the number of classes.

In this paper, we provide a framework for determining
the solution approach for current and future multilevel
thresholding algorithms. More specifically, we define two
classes of objective functions for which the optimal thresh-
olds can be found by efficient algorithms. For the first class,
a dynamic programming (DP) algorithm, which has a sig-
nificantly lower time complexity than exhaustive search,
can be employed for finding the thresholds. While this al-
gorithm has been proposed in Ref. 2 for the thresholding
method by Otsu® and in Ref. 4 for the method of Kittler and
Illingworth,5 we show that this DP algorithm can also be
employed for finding the optimal thresholds for the maxi-
mum entropy method by Kapur et al.® For the second class,
we prove a theorem based on which more efficient algo-
rithms can be used for finding the optimal thresholds. These
algorithms consist of a combination of DP and fast matrix
searching that results in algorithms that have lower time
complexities than the DP algorithm and can be several or-
ders of magnitude faster. We show that the objective func-
tions of the method proposed by Otsu® and the multilevel
thresholding extension of the method by Li and Lee are
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members of the second class. Consequently, we can find the
optimal thresholds for these methods much faster than the
previously proposed DP algorithm in Ref. 2. (The multi-
level extension of Ref. 7 and its solution are proposed here
for the first time.)

To verify the efficiency of the algorithms, execution
time measurements of ANSI C implementations are pre-
sented. Note that the scope of this paper is not to analyze
the segmentation performance of different thresholding al-
gorithms. We do not analyze the segmentation performance
since the proposed algorithms provide the same optimal
results as the original methods, simply much faster.

An earlier version of this work was presented in Ref. 8.
This paper is more comprehensive and contains new mate-
rial that has not been shown before. For example, in Sec. 3,
we show that the objective function of the Kapur method®
belongs to the first class of objective functions; in Sec. 5,
we analyze how the structure of the histogram influences
the execution time; and in the Appendix, we show the proof
of Theorem 1.

The paper is organized as follows: In Sec. 2, multilevel
image thresholding is introduced and the problem is math-
ematically defined. In Sec. 3, the first class of objective
functions is defined and the DP algorithm that can be used
for finding the optimal thresholds is presented. In Sec. 4,
the second class of objective functions is defined and the
algorithms combining DP and fast matrix searching are in-
troduced. In Sec. 5, execution time measurements of the
different algorithms are presented. Last, the paper is sum-
marized and conclusions are drawn in Sec. 6.

2 Multilevel Image Thresholding

The pixels of a grayscale image are represented by L gray
levels g from 1 to L. Multilevel image thresholding is the
task of separating the pixels of the image into M classes
C,...Cy, based on their values, by selecting the integer
thresholds 1,...t,,_;. Class Cy is defined as C,={g|t,_;<g
<t,}, where k e {i|1 <i<M} refers to the class number.
The thresholds 7, and 7, are defined to be equal to 0 and L,
respectively.

For the selection of the thresholds, most methods em-
ploy the histogram of the image. The histogram A(g) shows
the number of occurrences of the gray level g in the image,
where Egz h(g)=N, with N the total number of pixels in the
image. The normalized histogram p(g)=h(g)/N can be
considered as an estimate of the probability mass function
of the gray levels present in the image.

For each class, statistical properties such as the probabil-
ity of the class (later called class weight), the mean, and the
variance of the class can be calculated as follows:

3 . . 2
At pnt] = 2 p(i) - (l - /-L(tk—l’tk]) . 3)

i=ty_+1 w(ti1.1;]

The thresholding methods considered in this paper result
from the optimization of an objective function. The optimal
thresholds are the ones that either minimize or maximize
the objective function. For the sake of conciseness and
without loss of generality, derivations are shown only for
the case where an objective function Jy,; (to be defined
later) is maximized, i.e.,

[IT,I;, ,t;_l] =arg max(Jy, (11, ... .1y-1)), (4)

with the following ordering for the positions of the thresh-
olds:

0<t,<ty... <ty <L. (5)

The straightforward approach for finding the optimal
thresholds is an exhaustive search, i.e., evaluating the ob-
jective function for every possible combination of thresh-
olds. However, the number of possible combinations Q is
given by (it is assumed that M <L):

Q=(L—1>=1_‘[ L—i>(ﬂ>’”‘l. ©)

M-1)" i M—-i \M-1

Therefore, an algorithm based on exhaustive search is suit-
able only for small numbers of gray levels and classes; it
quickly becomes unsuitable when the number of gray levels
or classes is increased. For example, an ANSI C implemen-
tation of an exhaustive search algorithm for the Otsu
method requires 42 ms for 128 gray levels and 4 classes.
When the number of classes is increased to 5, the execution
time increases to 1.8 s. For 256 gray levels, which is the
most common number of gray levels for images, the execu-
tion time is 350 ms and 28 s for 4 and 5 classes, respec-
tively. Note that this is several orders of magnitude slower
than the algorithms introduced in this paper. Please refer to
Sec. 5 for execution time measurements of the algorithms
proposed in this paper and information about where the
ANSI C source code (including exhaustive search algo-
rithm) can be found.

3 Dynamic Programming Solution

In this section, we consider multilevel image thresholding
algorithms that are based on dynamic programming (DP).
We also show that DP can be employed for finding the
optimal thresholds for the maximum entropy method in
Ref. 6.

3.1 General Case

The required structure for the first class of objective func-
tions that accept a DP solution (also known as the shortest
path algorithm) for finding the optimal thresholds is the

I
winennl= 2 pl), (1)  following:
i=tp_1+1 M
‘]M,L(tl’ $tM—1)=El(tk—1’tk]7 (7)
by o k=1
pli)-i :
w1t ] = > (2) where I(t;_;,1,] is referred to as the class cost of class C;.
=ty +1 UUSRA Hence, the class cost can depend only on its boundary val-
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ues, namely, #,_; and 7. A partial sum up to gray level [ for
the first m classes is defined as

Jm(l) = E l(tk—l’tk]a 1< I < 15) <. < L1 <. (8)
k=1

For every gray level /, a subproblem can be defined as
finding the optimal thresholds that partition the interval
[1,1] into m classes. The optimal solution to the subprob-
lem is given by

(D). ©)

sk
J (D)= max
Isy<...<t, 1<l

By rewriting the optimal solution to the subproblem, the
following recursive formulation is obtained:

YMOE max PR CEEALE
" /11—1<l

Isy<...<t, k=1

m—1
(E l(tk—btk] + l(tm—hl]),

= max
Ist<... <ty <I\ k=1
= max ([ (t,-0) +1(t,-1.0]). (10)

m—1<t,, <l

By setting m=M and /=L, this equation provides the maxi-
mum of the overall problem. It is clear that if the thresholds
of a subproblem are not chosen optimally (and therefore
they are not maximizing the objective function for the sub-
problem), the overall objective function cannot attain its
maximum value. By having this recursive formulation, the
optimal thresholds can be found by the shortest path algo-
rithm. Pseudocode for the algorithm is depicted in Algo-
rithm 1:

Algorithm 1: DPSEARCH(Trellis, M, L)
Trellis[0,0].J:=0
for m:=1to M do
for :I=mto L-M-m do
Jmaxi=—
for each node in Trellisgm-1,:] do
g:=gray level of node
J:=Trellisfm-1,9].J+€(g,/]
if J>Ja then
Trellisfm, /].d:=J
Trellisim, [].pos:=g
Imax=dJ
end if
end for
end for
end for
— — — Backtracking
=L
m:=M
while m=2 do
5""—1:: Trellisfm, /]. pos

m-1

m:=m-1
end while
return [£,f,, ..., 8, ]

A trellis is employed to find the optimal thresholds. (A
specific example for M=4, L=8 is shown in Fig. 1.) In the
pseudocode, the trellis is represented by the data structure
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Fig. 1 Trellis for the shortest path algorithm for M=4, L=8.

Trellis; a node at stage m and gray level [ are accessed by
Trellis[m,[]. The algorithm proceeds from the bottom of
the trellis to the top and compares paths emerging from
nodes one stage below and to the left of the current node.
The maximal cost is stored in the node, and a back pointer
is set to point to the node from which the optimal path
emerges. When the algorithm arrives at the end node, the
optimal thresholds are found by backtracking to the start
node.

Note that the amount of work the DP algorithm needs to
perform in the first stage of the trellis is the same as the
amount of work performed by an exhaustive search with
M=2. Consequently, the DP algorithm is more efficient
than an exhaustive search only when M >2. Since the num-
ber of stages is M, the number of nodes per stage equal to
(L-M+1), and the number of paths that have to be com-
pared per node is proportional to L, the time complexity of
this algorithm is O(ML?). This assumes that the class cost
I(ti_; . 1] can be calculated in O(1) time. This can be the
case for many objective functions by introducing a prepro-
cessing step that requires O(L) time. (An example will be
shown in Sec. 3.2). In Ref. 2, a dynamic programming
scheme based on Eq. (10) has been proposed for the thresh-
olding method by Otsu® and in Ref. 4 for the minimum
error thresholding method by Kittler and Illingworth.5

The shortest path algorithm is also shown here because
it forms the basis of more efficient algorithms, which are
introduced in Sec. 4. Furthermore, we show that the DP
algorithm can be employed for finding the optimal thresh-
olds for the maximum entropy method by Kapur et al.’ as
shown next.

3.2 Maximum Entropy Method

Numerous entropy-based thresholding methods have been
proposed. (A good overview can be found in Ref. 1.) With
the method proposed in Ref. 6, the classes are regarded as
separate signal sources. The optimal thresholds maximize
the sum of the class entropies, given by

M

‘]M,L(tl’ "'9tM—1)=El(tk—l’tk]7 (11)
k=1

where the class cost [(f;_,1;] is defined as
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p(i) 10( pli) ) 12)

Wt ]l=-

(et i=z,§+1 wlti_1.1] w(tip.1;]

While the objective function for multilevel thresholding is
proposed in Ref. 6, no method for selecting the thresholds
maximizing the objective function is given. Clearly, the
class cost depends only on #,_; and t;. Therefore, the DP
algorithm can be used to find the optimal thresholds. How-
ever, the time complexity of the DP algorithm is O(ML?)
only if the class cost can be calculated in O(1) time. This is
accomplished by precalculating and storing two arrays de-
fined as

I p(1)-log(p(1)) ifi=1,

H(l)_{H(i—1)+p(i)~10g(p(i)) if2<i<L, (13)
e ifi=1,

W(l)_{W(i—1)+p(i) if2<i<L. (14)

After the arrays have been precalculated, which requires
O(L) time, the class cost can be calculated as

H(t,) — H(t;_y)

W(r) - W(ty) (15)

H(tyo.t] =log(W(ty) = W(ti_y)) -
The time needed for this operation does not depend on 7,_;
and f;, which means that the time complexity is O(1).
Therefore, the optimal thresholds for the method proposed
in Ref. 6 can be found in O(ML?) time using DP.

4 More Efficient Solutions

As shown in the previous section, it is possible for some
multilevel thresholding methods to employ a DP solution
with time complexity O(ML?) to find the optimal thresh-
olds. However, the time needed to find the optimal thresh-
olds still increases quadratically with the number of gray
levels. In this section, we introduce solutions for finding the
optimal thresholds more efficiently, given that the objective
function has certain properties.

The problem of finding the optimal paths leading to all
the nodes in one of the stages 2,...,M—1 of the trellis is
equivalent to the problem of finding the row-wise maxima
in a lower triangular (L—M+1) X (L—M+1) matrix A. At
stage m, the matrix is given by

A(r,c)
-0, ifc>r,
J:;_l(c+m—2)+l(c+m—2,r+m— 1], ifc<r.
(16)

In this matrix, the cost of the paths up to all the nodes of
one stage in the trellis are treated as matrix elements, where
the column c¢ indicates the node from which the path
emerges and the row r the node where the path ends. The
elements above the main diagonal of the matrix are defined
to be equal to —o, since there are no paths coming from
nodes to the right or directly below the current node. We
can therefore replace the two inner for loops of the DP
algorithm with a matrix searching algorithm that finds the
row-wise maxima in A.
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Fig. 2 Intervals of the convex quadrangle inequality.

If the matrix has no special properties, finding the row-
wise maxima in the lower triangular region requires calcu-
lating all the elements in the region, which is exactly the
same as the calculations performed in one stage of the DP
algorithm. Depending on the objective function, the matrix
can have properties that enable us to find the row-wise
maxima without calculating all elements, which results in a
reduced time complexity of the overall algorithm.

Assume that for some objective function, the class cost
(ty_y ,1;] has the property

la,u] +(b,v] = l(a,v] + I(b,u],

lsa<b<u<v<lL, (17)

which is known as convex quadrangle inequality. The in-
tervals used are illustrated in Fig. 2. If the class cost has
this property and we take four elements from the lower
triangular region of A such that |<r <r,<L-M+1 and
1<c¢,<cy<r, it follows from Egs. (16) and (17) that

A(ry,c)) +A(ry,cp) = A(ry,cy) +A(rp,cy), (18)

which means that A is a lower triangular inverse Monge
matrix. Monge matrices have a range of properties that can
be exploited when performing combinatorial optimization;
refer to Ref. 9 for a thorough discussion of this subject. For
the problem at hand, the monotonicity of A can be ex-
ploited to find the maxima more efficiently. Assume that we
know A(ry,c;) <A(r,c,); using Eq. (18), it is easy to show
that this implies A(r,,c¢;) <A(r,,c,), which means that, A
is totally monotone.

The row-wise maxima of a totally monotone matrix can
be found using matrix searching algorithms. Note that the
matrix introduced here is a theoretical construct, and it is
not necessary to calculate it before executing the matrix
searching algorithm. (Doing so actually would not result in
a reduced time complexity.) If a matrix searching algorithm
needs a specific element of the matrix, it uses the cost
stored in a node of the trellis and the objective function, as
given by Eq. (16), to calculate it.

4.1 Divide-and-Conquer Algorithm
The divide-and-conquer algorithm exploits the fact that A

is monotone, which means that

Cmax(rl) = Cmax(r2)s = Iy < r =m, (19)

where c.<(r) denotes the column index of the leftmost
element containing the maximum value of row r. That A is
monotone follows directly from the total monotonicity. As-
sume that ¢.(r)) = cax(r2) for some 1<r; <r,<m. The
total monotonicity implies that
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A(rZ’Cmax(rZ)) < A(rZ’Cmax(rl)) > (20)

which contradicts the fact that c,,(r,) is the column index
of the maximum in row r,.

When the divide-and-conquer algorithm is used
to find the row-wise maxima of an mXn matrix A,
it first searches for the maximum in the middle row
r=[m/2] of the matrix, and it is then recursively applied
on the submatrices A(l,...,r—1;1,...,ch(r)) and
A(r+1,...,m;cp(r), ... ,n), as shown by the pseudocode
in Algorithm 2. The algorithm is started by calling
DIVCONQ(A ,0), and it obtains a vector MAX containing
the maxima positions. The time complexity of this algo-
rithm can be found using the recursion tree method.'® The
worst-case execution time of the algorithm can be written
as:

cn ifm=1,

i 21
2T(m/2,n/2) +cn, ifm>1, 1)

T(m,n) = {
where ¢ is a constant time needed to evaluate an element of
the matrix. As the recursion depth is log,(m) and the accu-
mulated execution time across all branches at each level of
the tree is cn, the time complexity of the algorithm is
O(nlog m).

When this algorithm is combined with the DP algorithm,
the divide-and-conquer algorithm is executed once for each
stage 2,...,M—1 of the trellis. As the matrix has a size of
(L-M+1)X(L-M+1) and we assume that the class cost
can be calculated in O(1) time, the resulting time complex-
ity is O(MLlog L).

Algorithm 2: DIVCONQ(M, offset)
[m, n]:=size of M {rows, columns}
r:==[m/2]
j:=position leftmost maximum in row r of M
MAX[ offset+r]:= j {store position}
if m=1 then
return
else
if r+1 then
P=M1...r-1,1...))
DIVCONQ(P, offset)
end if
Q:=M(r+1...m,j...n)
DIVCONQ(Q, offset+r)
end if

4.2 SMAWK Algorithm

Another algorithm, which exploits not only the monotonic-
ity but also the total monotonicity of the matrix, is known
as the SMAWK algorithm.“ Like the divide-and-conquer
algorithm, the SMAWK algorithm is recursive, but the total
monotonicity of the matrix makes it possible to find the
row-wise maxima of an m X n matrix (m<n) in O(n) time.
Pseudocode of the SMAWK algorithm is shown in Algo-
rithm 3. The algorithm consists of three functions and is
started by calling SMAWK(A). The function REDUCE
forms a central part of the algorithm; it removes n—m col-
umns that do not contain row maxima from the matrix. The
REDUCE function can do so in O(n) time; please refer to
Ref. 11 for the derivation of the time complexity of the
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SMAWK algorithm. By calling the function REDUCE, the
initial problem is transformed into the problem of finding
the row-wise maxima in an m X m matrix. The maxima in
the even-numbered rows are found by calling SMAWK re-
cursively on a matrix containing only the even-numbered
rows. The maxima in the odd-numbered rows are found by
the function MFILL, which can be done very efficiently
since the maxima in the even-numbered rows have already
been found.

By combining the DP and the SMAWK algorithms, the
optimal thresholds are found in O(ML) time, where it is
again assumed that the class cost can be calculated in O(1)
time.

Algorithm 3: SMAWK (M)
P:=REDUCE(M)
if P is size 1 X1 then
P is a maximum in the initial matrix, store
position
return
end if
Q:=matrix with even-numbered rows of P
SMAWK (Q) {recursive call}
MFILL(P,Q) {maxima in odd-numbered rows}
REDUCE (M)
[m, n]:=size of M {rows, columns}
k=1
while M has more columns than rows do case
M(k,k)=M(k,k+1) and k<m:
m:=m+1
M(k, k)= M(k,K+1) and k=m:
Delete column k+1 of M
M(k,K)<M(k,k+1):
Delete column k of M
if k>1 then
ki=k-1
end if
end case
end while
return M
MFILL (P, Q)
[m, n]:=size of P {rows, columns}
MPOS [2,4,...,2lm/2]]:==pos. maxima in even-
numbered rows of P, known from Q
MPOS [0]:=1 MPOS[m+1]:=n
for ii=1...[m/2] do
r=2j-1
max:=—oo
for ¢:=MPOS[r-1]...MPOS[r+1] do
if P(r,c)>max then

max:=P(r,c)
MPQS [r]:=¢c
end if
end for
end for

4.3 Objective Functions for Efficient Multilevel
Thresholding

In this section, a class of objective functions that fulfill the
convex quadrangle inequality and have class costs that can
be calculated in O(1) time is introduced. Consequently, if
the objective function of a multilevel thresholding method
belongs to this class, it is possible to find the optimal
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thresholds in O(ML) time. It will be shown in this section
that the objective functions of two well-known methods are
members of this class.

The objective function for this class is calculated as the
sum over M classes, as defined in Eq. (7). Furthermore, the
class cost must have the structure introduced in the follow-
ing theorem.

Theorem 1: A class cost I(p,q] of the form

1(p,q]=w(p.q] f(M> (22)
w(p.q]

where w(p,q] is the class weight (probability of the class),

f(+) is a convex function on the interval [y(1),¥(L)], and

function (-) is either monotonically increasing or decreas-

ing on the interval [1,L], fulfills the convex quadrangle

inequality.

Please refer to the Appendix for the proof of this theo-
rem.

As with the maximum entropy method, it is possible to
precalculate and store two arrays, which enables us to cal-
culate the class cost in O(1) time. These two arrays are
defined as

L 1p(1) A1), ifi=1,
N(l)_{N(i—1)+p(i)~y(i), if2<i<L, (23)

L 1p(), ifi=1,
W(l)_{W(i—l)w(z‘), ifo<i<L. (24)

Both arrays are L elements long, thus calculating and stor-
ing their values requires O(L) time. After the arrays have
been precalculated, the class cost {(p,g] can be calculated
as follows:

N(g) - N(p) ) ' 25)

W(g) - W(p)
In the following, it is shown that two existing threshold-

ing methods have objective functions that belong to the
class introduced in this section.

I(p.q]=[W(q) - W(p)] 'f(

4.3.1 Example A: The Otsu method

The method proposed by Otsu® is one of the most refer-
enced thresholding methods. Also numerous methods for
improving the time efficiency of the multilevel case have
been suggested. As mentioned earlier, a DP-based solution
with time complexity O(ML?) has been proposed in Ref. 2.
In Ref. 12, the execution time of the exhaustive search is
reduced by precalculating and storing all possible class
costs. In addition, various iterative methods have been pro-
posed. For example, in Ref. 13, the pairwise nearest neigh-
bor method; in Refs. 14 and 15, the zeros of the partial
derivatives of the objective function; and in Ref. 16, the
Nelder-Mead simplex search combined with particle swarm
optimization are used to find the thresholds. However, it is
difficult to specify an upper bound on the execution time
for these methods because it is not guaranteed that they
converge to the optimal thresholds within a given number
of iterations.
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The optimal thresholds for the method proposed by Otsu
are found by minimizing a criterion called within-class
variance, which is defined as follows:

M
0-€V= > w(ti,1] - 02ty (26)
k=1
M
=> X p()- (i plte.n]) (27)
k=1 i=tj_y+1

An equivalent problem is encountered when designing
an optimal scalar quantizer. An M-level scalar quantizer
assigns to each input value one of M reconstruction values.
When the input values are discrete values in the range
1...L, the quantizer is fully specified by a set of M—1
interval boundaries 0<t;<t,...<tfy_; <L and a set of M
reconstruction values r; <r,... <ry. The quantizer assigns
the reconstruction value r; to input values in the interval
(ti—1,1,), where t,=0 and t,,=L. An optimal scalar quan-
tizer uses a set of interval boundaries and reconstruction
values such that the mean squared quantization error (MSE)
is minimal.'” The MSE is given by

M
MSE=2, X p(i)-(i-r)* (28)
k=1 i=t;_ +1

It can be shown that the reconstruction values have to be
the centroids of the corresponding intervals, i.e., 7
=pu(ty_y, 1), for the quantizer to be optimal. Therefore, the
problem of designing an optimal scalar quantizer is equiva-
lent to finding the Optimal thresholds for the Otsu method.

Wu showed in Refs. 18 and 19, that the optimal quan-
tizer can be found in O(ML log L) and O(ML) time, respec-
tively, by employing algorithms combining DP and divide-
and-conquer or SMAWK matrix searching. Note that the
result that algorithms for scalar quantizer design with
O(ML) time complexity can be used to find the optimal
thresholds for the Otsu method has also been found inde-
pendently by Virmajoki.20

The fact that the optimal thresholds for the Otsu method
can be found in O(ML) time can also be seen when another
objective function, called modified between-class variance
in Ref. 12, is used. Maximizing this objective function re-
sults in the same thresholds as minimizing (26). The class
cost of this objective function is defined as

(p.ql=w(p.q]- (u(p.q1)*. (29)

Note that the class cost has the form given in Eq. (22);
therefore, it fulfills the convex quadrangle inequality, and
the optimal thresholds can be found in O(ML) time.

4.3.2 Example B: The minimum cross entropy
method

For the minimum cross entropy method proposed in Ref. 7,
the optimal threshold is the one that minimizes the cross
entropy between the image and its binarized version, given
by
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L
i i
+ h(i)ilog| ——=/, (30
where it is assumed that the means of the two classes are
the reconstruction values in the binarized image. It is
straightforward to extend this method to multiple thresh-
olds, and as with the Otsu method, the optimal thresholds
can also be found by maximizing a modified objective

function. The class cost of this objective function is given
by

(1) = > h(i)i log<
i=1

1(p.q]=w(p.q]- u(p.q] - log(u(p.q]). (31)

Obviously, this class cost has the form given in Eq. (22),
which means that the optimal thresholds can be found in
O(ML) time.

5 Execution Time Measurements

In this paper, three different algorithms for efficient multi-
level thresholding have been presented. Their time com-
plexities of O(ML?), O(ML log L), and O(ML) provide an
upper bound for their execution time. It is clear that the
algorithm that combines DP and SMAWK matrix searching
and has a time complexity of O(ML) outperforms the other
algorithms if L and M are sufficiently large. However, from
the time complexity measure alone, it is not possible to say
which algorithm is the fastest for a certain combination of
M and L, because the constant factors are unknown.

Quantitative statements about the performance of the al-
gorithms can be made by implementing them and compar-
ing their execution times. The implementations are made
for the thresholding method proposed by Otsu.” In order to
have efficient implementations, ANSI C is used, and no
memory is allocated dynamically during the execution of
the algorithms. The implementation of the SMAWK algo-
rithm using a low-level programming language like ANSI
C is quite involved. In fact, only implementations using
high-level languages such as Java or Python can be found
on the Internet. For the implementation of the SMAWK
algorithm, modifications proposed in Ref. 21 proved to be
helpful. For more details, please refer to the source code of
the implementations used in this work, which is available
online. (The source code of the implementations used in
this work is available at http://ivpl.eecs.northwestern.edu/
research/projects/thresholding.) The presented execution
times were obtained by running the algorithms on a PC
with a Pentium 4 2.8-GHz processor.

Since most grayscale images contain 256 gray levels, the
execution times for this number of gray levels are of par-
ticular interest. The measured times for the different algo-
rithms are shown in Fig. 3. The histogram of the Lena
image (converted to gray scale) is used for the measure-
ments. Note that the execution time of all algorithms is
proportional to the number of classes. The algorithms that
combine DP and matrix searching are both more than 10
times faster than the normal DP algorithm. Even though it
has a higher time complexity, the algorithm that uses
divide-and-conquer matrix searching is slightly faster than
the algorithm that employs SMAWK. This may be ex-
plained by the overhead incurred by the complex structure
of the SMAWK algorithm. As noted previously, our algo-
rithms are optimal and they obtain the same thresholds as
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Fig. 3 Execution times for L=256, M=1,...,5.

the original method by Otsu,’ and analyzing the segmenta-
tion performance of various methods is not within the
scope of this paper. However, we show an example seg-
mentation of the Lena image obtained by the Otsu method
with M=5 in Fig. 4(b), where the pixels of each class are
set to the mean gray level of the corresponding class.

When the number of gray levels is increased, the advan-
tage of using an efficient matrix searching algorithm be-
comes more significant, as shown in Fig. 5. The histograms
used for measurements with more than 256 gray levels are
interpolated versions of the histogram of the Lena image.
For M=5 and L=2'°, the normal DP algorithm requires
about 218 s to find the optimal thresholds, whereas the ex-
ecution times of the faster algorithms are around 100 ms.
The difference between the algorithm that combines DP
and divide-and-conquer matrix searching and the one that
uses a combination of DP and SMAWK is shown in Fig. 6.
It can be seen that the execution time of the algorithm that
uses divide-and-conquer grows faster than linear, while the
execution time of the algorithm that uses SMAWK is pro-
portional to the number of gray levels, as theoretically pre-
dicted. Note that the algorithm that uses SMAWK requires
only about 1.5 s to find the optimal thresholds for M =5 and
L=2%° while the normal DP algorithm would need about
15 h. Employing an algorithm based on an exhaustive
search, as proposed in Ref. 12, is literally impossible for
this combination of M and L—it would require millions of
years for finding the optimal thresholds! Some of the mea-
sured execution times and the relative speedup to the DP
algorithm are shown in Table 1.

An interesting question is how the structure of the his-
togram influences the execution time of the algorithms. It is
easy to see that the amount of work the DP algorithm in-
troduced in Sec. 3 needs to perform depends only on M and
L and not on the structure of the histogram. Therefore, after
the histogram has been calculated, the execution time will
be the same for all images that have the same number of
gray levels. On the other hand, the execution time of the
matrix searching algorithms depends on the structure of the
matrix. Consequently, the execution time of the algorithms
combining DP and matrix searching will be influenced by
the histogram. Three different histograms have been used
for measurements, the first is from the Lena image, the
second is from the Fishing Boat image, and the third is
randomly generated. This means that a random number in
the interval [0, 1] is used as the probability for each gray
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Fig. 4 Original (a) and segmentation (b) with M=5; thresholds:
t;=46, £,=83, t3=118, and #,=163.

level, and p(i) is then scaled such that w(0,L]=1. The ex-
ecution times for these histograms are shown in Figs. 7 and
8.

As can be seen from these measurements, the execution
times are slightly higher when random histograms are used,
and the structure of the histogram influences the execution
time of the algorithm using SMAWK more than that of the
algorithm using divide-and-conquer. We found that the ex-
ecution times using random histograms are close to the
worst-case execution times, which means they can be used
as an upper bound when the algorithms are used in real-
time systems.

6 Summary and Conclusions

In this paper, we provide a framework for finding the solu-
tion approach of multilevel thresholding algorithms by de-
fining two classes of objective functions for which the op-
timal thresholds can be found by efficient algorithms. In
order for an objective function to belong to the first class,
the class cost can depend only on its boundary values, as
was shown in Sec. 3. We show that a DP scheme can be
used for finding the optimal thresholds for this class of
objective functions. Even though DP has been proposed in
Ref. 2 for the method by Otsu’ and in Ref. 4 for the method
of Kittler and Illingworth.5 it does not seem to be widely
known. For example, for the method proposed in Ref. 6, we
show that the optimal thresholds can be found by employ-
ing a similar DP algorithm with time complexity O(ML?).
We define the second class of objective funcitons in Theo-
rem 1. For objective functions belonging to this class, more
sophisticated allgorithmslg"9 from the field of optimal scalar
quantization can be employed. As it turns out, Otsu’s
method also belongs to this second class and so does the
multilevel extension of the minimum cross entropy method

— 2.5-10%
o 2.0-102 DP —e—
2 DP-Div&Conq — e —
1.5-10 DP-SMAWK -- = --

1.0 - 102
5.0 - 10"
0.0 - 10°

execution time

28212213 214 215 216

gray levels L

Fig. 5 Execution times for L=28,...,2'%; M=5.
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Fig. 6 Execution times for L=28,...,2%0%; M=5.

proposed in Ref. 7. Hence, we show that the optimal
thresholds for the important Otsu method can be found in
O(ML) time. However, we note that this result has also
been found independently by Virmajoki.20 Depending on
the number of gray levels L and classes M, this results in a
speedup of several orders of magnitude relative to previ-
ously reported DP algorithms with time complexity
oML?).

By comparing the execution times of actual implemen-
tations, we can make quantitative statements about the ef-
ficiency of the algorithms. The measured execution times
are consistent with the theoretically derived time complexi-
ties.

Appendix: Proof for Theorem 1

In the following, we prove Theorem 1 for monotonically
increasing functions 7(-); the proof for monotonically de-
creasing functions can be found by a symmetric argument.
Our proof follows closely the proof of Ref. 22 (Theorem
3.6).

Proof: Every function y(-), which is monotonically in-
creasing on the interval [1,L], maps the values 1<a<b
<u<v<L to the values y(1)=< y(a) < y(b) < Y(u) < y(v)
< y(L). In the following derivations, the argument of the
function f(-) is denoted as

e @

Since the mean u(p,q] is monotonically nondecreasing in
p and ¢ and the function y(-) is monotonically increasing,
the function w.(q, p] is also monotonically nondecreasing
in p and gq. Therefore, we have

o] = (g b.u] ofa,v ]y = o). (33)

The values w.(b,u] and w.(a,v] can be obtained by a lin-
ear combination of u.(a,u] and w.(b,v],

3.0- 109
2.5-10°
2.0-10°
1.5-10°
1.0 - 10°
5.0-10" 1
0.0 - 109

Lena —e—
Fishing Boat — e —

Random ---=--

execution time [s]

28 216217 218 219 22(]

gray levels L

Fig. 7 Execution time DP combined with divide-and-conquer; M=5.
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Table 1 Execution times for M=5, (time/speedup).

L DP DP-Div&Conq DP-SMAWK
256 3.21 ms 1 0.29 ms 1.1 0.31 ms 10.4
16384 13.8s 1 29.9 ms 462 19.8 ms 697
65536 218 s 1 132 ms 1650 85.2 ms 2560
wy(b,u] = ap.(a,u] + (1 - a)u,(b,v], (34) n=w(b,v]- (1 - a)w(b,u] - (1 - B)w(a,v]. (43)
A rather long, but simple, computation reveals that {=0 and
My(a7v] = ,B,M./(a,u] +(1- ,6’),u7(b,v], (35) 7n=0, which means that

where the coefficients « and (3 are given by

— lu’y(bav] _ /‘l”y(b’u]
/’l’)/(b7v:| - /‘l”y(a’u] '

(36)

— M'y(b’v] - /"L‘y(a’v]
M’y(b9v] - ,uy(a,u] .

B (37)

Since the function f(-) is convex, upper bounds for I(b,u]
and I/(a,v] can be found as

1(bu] < w(b.u] - [af(p(a.u]) + (1 - a)f(u,(b.0])], (38)

I(a,v] = w(a,v]- [Bf(pyaul) + (1 = Bf(u,(bv])]. (39)

We prove that the class cost (22) fulfills the convex quad-
rangle inequality by showing that O is a lower bound for d,
which is defined as

d=la,u] +1(b,v]-1(b,u] - l(a,v]. (40)

Such a lower bound is found by substituting the upper
bounds for I(b,u] and I(a,v] into Eq. (40); after rearrang-
ing terms, it results in

d= ¢ f(pyaul) + 7 f(uy(b,0]), (41)
where { and #7 are given by
{=wla,u] — aw(b,u] - pwla,v], (42)

— 2.0-10° —— ‘ ‘
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Fig. 8 Execution time DP combined with SMAWK; M=5.
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la,ul +1(b,v]-1(b,u] = l(a,v] =0, (44)

and proves Theorem 1.
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