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Providing Secrecy With Structured Codes:
Two-User Gaussian Channels

Xiang He, Member, IEEE, and Aylin Yener, Senior Member, IEEE

Abstract— Recent results have shown that structured codes
can be used to construct good channel codes, source codes,
and physical layer network codes for Gaussian channels. For
Gaussian channels with secrecy constraints, however, efforts to
date rely on Gaussian random codes. In this paper, we advocate
that structure in random code generation is useful for providing
secrecy as well. In particular, a Gaussian wiretap channel in
the presence of a cooperative jammer is studied. Previously,
the achievable secrecy rate for this channel was derived using
Gaussian signaling, which saturated at high signal-to-noise
ratio (SNR), owing to the fact that the cooperative jammer
simultaneously helps by interfering with the eavesdropper, and
hurts by interfering with the intended receiver. In this paper,
a new achievable rate is derived through imposing a lattice
structure on the signals transmitted by both the source and
the cooperative jammer, which are aligned at the eavesdropper
but remain separable at the intended receiver. We prove that
the achieved secrecy rate does not saturate at high SNR for all
values of channel gains except when the channel is degraded.

Index Terms— Information theoretic secrecy, lattice codes,
cooperative jamming, Gaussian wiretap channels.

I. INTRODUCTION

THE notion of information theoretic secrecy was first
proposed by Shannon [1] whereby a message transmit-

ted to a receiver is guaranteed to be kept secret from an
eavesdropper, irrespective of the computational power the
eavesdropper possesses. In particular, it was shown that it is
possible that the eavesdropper gains no information regarding
the secret message having intercepted the cryptogram, albeit
at the expense of very long keys [1]. Wyner, in [2], established
that, if the signal received by the eavesdropper (Eve) is a
degraded version of the signal observed by the receiver, the
long secret keys needed to achieve secrecy per Shannon’s
notion are not necessary [2]. Csiszár and Körner [3] extended
Wyner’s setting to the general discrete memoryless wiretap
channel and established its secrecy capacity.
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Numerous channel models have since been studied using
the information theoretic secrecy framework. In this work, we
are mainly interested in Gaussian channels, i.e., channels with
additive Gaussian noise. The maximum reliable transmission
rate with secrecy was identified for some of these models
including the Gaussian wiretap channel [4], the MIMO wiretap
channel [5], [6] and the MIMO Gaussian broadcast channel
with confidential messages [7], [8]. On the other hand, secrecy
capacity regions for models with multiple transmitters remain
in general as open problems except for some special cases,
e.g., sum secrecy capacity for a degraded Gaussian multiple
access wiretap channel [9], [10]. Upper bounds, lower bounds
and some asymptotic results on the secrecy capacity exist,
see for example [11]–[16]. To prove achievability, Shannon’s
random coding argument is used in these works, in which
the codewords are i.i.d. sequences sampled from a distribution
defined over the channel inputs.

On the other hand, it is known that introducing a structure
on the set from which the codewords are sampled can be
helpful in proving certain information theoretical results [17].
This could be as simple as sampling codewords from a
QAM constellation [18]. In [17], a lattice is used, which
can be viewed as a constellation defined over N channel
uses. This structured random code approach [17] is useful in
multi-terminal problems: the structure of these codes makes
it possible to align unwanted interference, for example, in
Gaussian interference channels with more than two users
[19]–[22]. Additionally, it renders the analysis of some net-
work topologies feasible: for example, in [23], [24], using
structured codes allows the relaying scheme to be equivalent
to a modulo sum operation, making it easy to trace the signal
over a multi-hop relay network.

A natural question therefore is whether this approach is
useful for secret communication as well. In this work, we shall
answer this question positively. In particular, we will consider
the application of structured signaling in a two-user setting
employing cooperative jamming.

Cooperative jamming is a frequently used strategy in secure
communication, where the legitimate transmitters introduce
judicious interference into the channel to confuse the
eavesdropper while not causing excessive harm to the intended
receiver [12], [25]. This strategy has been used in a number of
channel models to improve secrecy rates; see [12], [13], [16],
[26]–[28] for example.

In this work, we focus on the simplest Gaussian chan-
nel model where such a strategy is known to be useful.
The model consists of a Gaussian wiretap channel and a
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cooperative jammer. This model can also be viewed as a
special case of a number of two-user Gaussian channel
models considered in previous work [12], [16], [26], [29].
Hence improving the achievable secrecy rate for this model
implies that the achievable rates for all these models can be
improved as well. Previously, this model was studied in [27]
with the optimal transmission power control strategy, where
both the cooperative jammer and the sender of the message
use codewords sampled from a Gaussian distribution. It was
found that the secrecy rate saturates when the transmission
power P increases, since the intended receiver is limited by
the interference from the cooperative jammer. In this work,
instead of sampling from a Gaussian distribution, we use
codewords sampled from a nested lattice structure, i.e., each
codeword is a sequence of fine lattice points in the Voronoi
region of a coarse lattice. The transmission power is adjusted
such that the lattice points sent by the transmitter and the
cooperative jammer align at the eavesdropper. This reduces
the information leaked to the eavesdropper regarding the
lattice point sent by the transmitter for a given component
of the codeword. The rate of this information leakage is
quantified to be less than 1 bit per channel use and further
eliminated through using a wiretap code as an outer code.
Meanwhile, since these lattice points are not aligned at the
intended receiver, by adjusting the power and nested ratio
of the nested lattice structure properly, we ensure that the
receiver can decode the lattice point sent from the transmitter
with high probability and find out the codeword being sent.
We prove that the achievable secrecy rate with this scheme
increases with power P at the rate of O(log2(P)) when
the channel is fully connected and not degraded, and con-
sequently demonstrate that positive secure degrees of freedom
(s.d.o.f.) are achievable for this channel improving the previous
results [12], [27].

The rest of the paper is organized as follows. Section II
describes the channel model, i.e., the wiretap channel model
with a cooperative jammer. Section III describes the method-
ology for computing the secrecy rate with nested lattice codes
in a cooperative jamming setting. Section IV applies this
approach to the channel model introduced in Section III,
derives the achievable secrecy rate, and shows that positive
s.d.o.f. are achievable except for a set of channel gains of
measure zero, for which the positivity of s.d.o.f. is further
proved in Section V. In Section VII, we discuss the impact
of imperfect channel state information. Section VIII concludes
the paper. Some of the proofs are presented in Appendices to
improve readability.

II. THE GAUSSIAN WIRETAP CHANNEL WITH

A COOPERATIVE JAMMER

Consider the Gaussian wiretap channel with a cooperative
jammer [12], [25], [27] shown in Fig. 1. In this model, node
S1 sends a message W1 via X1 to node D1, which must be
kept secret from node D2. Node S2, the cooperative jammer,
transmits X2. We assume the channel is fully connected, i.e.,
all channel gains are non-zero. After normalizing the channel
gains of the two links to the eavesdroppers, the received signals

Fig. 1. The Gaussian Wiretap Channel with a Cooperative Jammer.

at the two receiving node D1 and D2 can be expressed as1

Y1 = X1 + √
abX2 + √

bZ1

Y2 = X1 ± X2 + Z2.
(1)

Let Ŵ1 be the estimate of W1, estimated at node D1.
Let n be the total number of channel uses. D1 recovers W1
reliably if

lim
n→∞ Pr

(
W1 �= Ŵ1

)
= 0. (2)

In addition, since W1 must be kept secret from D2, we require2

lim
n→∞

1

n
H (W1) = lim

n→∞
1

n
H
(
W1|Y n

2

)
. (3)

There are two constraints on the input distribution to the
channel model in (1): First, we assume there is no common
randomness shared by the encoders of S1 and S2, i.e., the joint
distribution of the input signals has the following form:

Pr
(
Xn

1

)
Pr
(
Xn

2

)
. (4)

Second, the average power of Xi is constrained to be P̄i .
Define Xi, j to be the j th component of Xi , we have:

lim
n→∞

1

n

n∑
j=1

E
[

X2
i, j

]
≤ P̄i , i = 1, 2. (5)

The secrecy rate Rs is defined as:

Rs = lim
n→∞

1

n
H (W1) , (6)

such that the conditions (2), (3) are satisfied simultaneously.
The secrecy rate is the number of bits per channel use that
can be reliably transmitted without leaking information to the
eavesdropper at a positive rate.

In this work, we will mainly be concerned about the high
SNR behavior of the secrecy rate. Namely,

Definition 1: The secure degrees of freedom is defined as:

s.d.o.f . = lim sup
P̄1= P̄2=ρ→∞

Rs
1
2 log2 (ρ)

. (7)

1A general fully connected channel without loss of generality can be written
as (1) by scaling and renaming the transmitted signals. For example, (1)
can be written as Y1/

√
b = (X1/

√
b) + √

aX2 + Z1, Y2 = √
b(X1/

√
b) ±

X2 + Z2. Replacing Y1/
√

b with Ỹ1 and X1/
√

b with X̃1 lead to the channel
expression used in [27].

2The achievable rate in this work also holds for the secrecy constraint
limn→∞ H (W1) = limn→∞ H

(
W1|Y n

2
)
. See [30] for the additional steps

to prove achievability for this stronger secrecy constraint.
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Remark 1: In this paper, we focus our attention to real
valued channel gains, where the best known achievable rates
using Gaussian signaling do not yield positive secure degrees
of freedom [27]. For treatment of complex channels, please
see [31, Section 5.16]3. �

III. NESTED LATTICE CODES AND

COOPERATIVE JAMMING

In this section, we derive the secrecy rate expression when
nested lattice codes are used in a cooperative jamming setting.
The derivation shall be carried out for the following simplified
version of (1).

Y1 = X1 + Z1

Y2 = X1 ± X2 + Z2, (8)

which corresponds to a = 0, b = 1 in (1). This simplification
in the channel model allows us to explain all the necessary
steps of computing the secrecy rate without going into the
details on how nested lattice codes are decoded at the intended
receiver, since the intended receiver is not affected by the
cooperative jammer.

We begin by introducing a nested lattice code, which
provides the set of codewords with structure that we will
use. A nested lattice code is defined as an intersection of an
N-dimensional “fine” lattice � and the fundamental Voronoi
region of an N-dimensional “coarse” lattice �c, denoted by
V(�c). �,�c ⊂ RN . The term “nested” is due to the fact
that �c ⊂ �. The rate R0 of the nested lattice code book
� ∩ V(�c) is given by

R0 = 1

N
log2 |V (�c) ∩ �|. (9)

where |S| is the cardinality of a set S.
The modulo operation is defined as the quantization error

of a point x with respect to the coarse lattice �c:

x mod �c = x − arg min
u∈�c

‖x − u‖2 , (10)

where ‖x − y‖2 is the Euclidean distance between x and y in
RN . It can be verified that �∩V(�c) is a finite Abelian group
when the addition operation between two elements x, y ∈ �∩
V(�c) is defined as

x + y mod �c. (11)

The signal X N transmitted over N channel uses from a nested
lattice codebook is given by

X N = (uN + d N ) mod �c. (12)

Here uN is the lattice point chosen from � ∩ V(�c), and d N

is the dithering vector [32].
Remark 2: Conventionally, d N is defined as a continuous

random vector which is uniformly distributed over V(�c) [32].
This so called dithering vector is used to facilitate the analysis
of the probability of decoding errors for nested lattice codes,
since it is easier to bound this probability averaged over the

3Although the real channel model can be viewed as a special case of the
complex model, the scheme in [31, Section 5.16] does not yield a positive
secure rate for the real channel model.

random dithering vectors than bounding it for a fixed dithering
vector. The same technique is used here to prove that the
lattice points can be decoded by the intended receiver in
Appendices B and C. Note that, after proving the decodability,
the random dithering vector can be replaced by a fixed
dithering vector, since the performance under the former case
is just the average performance under a fixed dithering vector,
and thus must be attainable by at least one fixed dithering
vector, see [31, Section 5.12] for details. Hence, in the main
sections of the paper, we shall assume that d N is a fixed vector
and is perfectly known by all receiving nodes. �

A. Coding Scheme

For our coding scheme, both node S1 and S2 shall use
the same nested lattice code. Their transmitted signals are
expressed in the form of (12):

X N
i = (uN

i + d N
i ) mod �c, i = 1, 2. (13)

The lattice point uN
1 corresponds to the effective channel input

which conveys information. uN
2 is the judiciously introduced

interference for cooperative jamming and is sampled in an
i.i.d. fashion from the nested lattice codebook according to a
uniform distribution.

The codeword used by node S1 is a concatenation of m
length-N vectors where m is a positive integer and each
length-N vector is a shifted fine lattice point given by (13)
for i = 1. The codebook contains 2nR0 such codewords,
where n = m N and R0 is given by (9). Each codeword is
generated by (i) obtaining m independent copies of uN

1 by
sampling uniformly and independently by m times from the
set � ∩ V(�c), (ii) using (13) to translate each copy of uN

1
to X N

1 , (iii) concatenating the resulting m copies of X N
1 ’s to

form a codeword.
The confidential message is mapped to the codeword using

the wiretap coding scheme [2]: The codewords are randomly
categorized into 2n[R0−1]+ bins. The encoder chooses a bin
based on the realization of the confidential message, and
randomly chooses a codeword from the bin to transmit. The
overall coding scheme is a serial concatenation of a wiretap
coding scheme and the nested lattice code. The nested lattice
code is the inner code. The wiretap coding scheme is the outer
code, which is used to eliminate the 1-bit information leak to
achieve perfect secrecy mentioned in Section I. Although the
wiretap codebook is randomly generated, it is not completely
random since every N component of the codeword has to be a
lattice point. This is consistent with the interesting terminology
“structured random code” [17].

B. Secrecy Rate Computation
If each N group of channel uses are viewed as a single

(meta) channel use with uN
1 being its input, we have in effect

a memoryless wiretap channel at hand. This allows us to
leverage the following result from reference [3]: Consider a
memoryless wiretap channel described by Pr(Y, Z |X), where
X is the channel input, Y is the observation of the legitimate
receiver, Z is the observation of the eavesdropper. Then for a
given input distribution Pr(X), any secrecy rate Rs such that

0 ≤ Rs < [I (X; Y ) − I (X; Z)]+ (14)
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is achievable where [x]+ equals x if x ≥ 0 and 0
otherwise.

In our case, this means that any Rs such that

0 ≤ Rs < 1
N [I (uN

1 ; Y N
1 ) − I (uN

1 ; Y N
2 )]+ (15)

is achievable for the model in (8).
When evaluating (15), we expect that the first term

1
N I (uN

1 ; Y N
1 ) should be easy to compute. It should approach

the rate of the lattice codebook R0 as N increases, since this
is the same AWGN setting considered by [32] and the receiver
D1 should be able to correctly decode the lattice points sent
by S1 if the lattice codebook is designed properly. Computing
the exact value for the second term in (15) is challenging.
However, as we shall show below, upper bounding its value
is feasible. Since any value within the range given by (15) is
an achievable secrecy rate, an upper bound on the I (uN

1 ; Y N
2 )

leads to a computable achievable secrecy rate result.
We start with

I (uN
1 ; Y N

2 ) (16)

≤ I (uN
1 ; X N

1 ± X N
2 , Z N

2 ) (17)

= I (uN
1 ; X N

1 ± X N
2 ). (18)

To bound (18), we introduce a new tool, which we will term
the representation theorem from here on:

Theorem 1: Let t N
1 , t N

2 , . . . , t N
K be K N-dimensional vec-

tors taken from the fundamental Voronoi region of a given
lattice �. There exists an integer T , such that 1 ≤ T ≤ K N ,

and
K∑

k=1
t N
k is uniquely determined by {T,

K∑
k=1

t N
k mod �}. T is

a function of
K∑

k=1
t N
k .

Proof: The proof is given in Appendix A.
Remark 3: As shown in its proof, Theorem 1 is a purely

algebraic result and does not rely on the statistics of
t N
1 , t N

2 , ...t N
K . �

When K = 2, we have the following corollary:
Corollary 1: For X N

i , i = 1, 2 computed according to (12),
i.e., X N

i = (uN
i +d N

i ) mod �c, there exists an integer T , such
that 1 ≤ T ≤ 2N , and X N

1 ± X N
2 is uniquely determined by

{T, X N
1 ± X N

2 mod �c}. T is a function of X N
1 ± X N

2 .
Proof: Define −�c = {−x N : x N ∈ �c}. Since 0 ∈

�c and the difference of any two lattice points is a lattice
point, we have −�c = �c. This means that if X N

2 ∈ V(�c)
, then −X N

2 ∈ V(−�c). Since −�c = �c, this means that
−X N

2 ∈ V(�c) . Hence the corollary follows from Theorem
1 by letting t N

1 = X N
1 and t N

2 = ±X N
2 .

We next return to (18). Using Corollary 1, we find (18) can
be written as:

I (uN
1 ; X N

1 ± X N
2 ) = I (uN

1 ; X N
1 ± X N

2 mod �c, T ) (19)

= I
(
uN

1 ; X N
1 ± X N

2 mod �c

)
+ I
(
uN

1 ; T |X N
1 ± X N

2 mod �c

)

(20)

≤I
(

uN
1 ; X N

1 ± X N
2 mod �c

)
+H

(
T |X N

1 ± X N
2 mod �c

)
(21)

≤I (uN
1 ; X N

1 ± X N
2 mod �c) + H (T ) (22)

= I (uN
1 ; uN

1 ± uN
2 mod �c) + H (T ), (23)

where T is the integer defined in Corollary 1. (23) follows
from (22) since d N

1 and d N
2 are known by both the transmitters

and the receivers.
Since �∩V(�c) is an Abelian group, when uN

2 is indepen-
dent from uN

1 , and uN
2 is uniformly distributed over �∩V(�c),

we have [33], [34]:

I (uN
1 ; uN

1 ± uN
2 mod �c) = 0. (24)

Applying it to (23), we find that (18) is upper bounded by

H (T ) ≤ N. (25)

Equations (19)-(25) imply

1

N
I
(

uN
1 ; X N

1 ± X N
2

)
≤ 1. (26)

Applying this result back to (15), we find that the secrecy rate
approaches [R0 − 1]+ as N increases.

Remark 4: Note that X N
i sent by Node Si is always within

the Voronoi region of �c. As mentioned earlier, this restriction
leads to a small amount of information being leaked which is
eliminated by using the wiretap channel code as an outer code.
Recently [35] proposed a lattice Gaussian signaling scheme for
the Gaussian wiretap channel in which the transmitted signals
could also be sampled outside of the Voronoi region of �c

and it was shown in [36] that this new scheme eliminates this
information leakage without introducing a wiretap code as an
outer code. �

IV. ACHIEVABLE SECURE DEGREES OF FREEDOM WITH

NESTED LATTICE CODES

We next apply the procedure developed in Section III to the
fully connected model (1).

We begin by reformulating the channel in (1). We notice
that any

√
ab �= 0, can be represented in the following form:√

ab = p/q + γ /q (27)

where p, q are positive integers, and −1 < γ < 1, γ �= 0.
In this case, the channel model (1) can be expressed as:

qY1 = q X1 + (p + γ ) X2 + q
√

bZ1 (28)

Y2 = X1 ± X2 + Z2. (29)

Using this notation, we have the following theorem regarding
the achievable secrecy rate:

Theorem 2: For a given positive integer M , define Ptotal as

Ptotal = (αβ + 1)M − 1

β
q2b (30)

where for |γ | ≤ 1/2,

α = 1 − 2γ 2 +√1 − 4γ 2

2γ 4 (31)

and

β = q2 + (p + γ )2 . (32)

If Ptotal is available to node S1 and S2 as transmission power,
i.e., Ptotal ≤ min{P̄1, P̄2}, then the following secrecy rate Rs is
achievable for the channel model (1).

Rs = [(1

4
log2(α) − 1)M]+. (33)
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Proof: Compared to the channel model in (8), the added
complexity here is that node D1 is interfered by node S2. We
use a layered coding scheme [37] to eliminate this interference.
This scheme involves technical details related to how nested
lattice codes are decoded at the receiver. For clarity, we keep
these details in Appendix B while providing the essential steps
on the computation of the secrecy rate as follows.

Let X N
k be the signal sent by node Sk over N channel uses.

In a layered coding scheme, X N
k is the sum of codewords from

M layers as shown below:

X N
k =

M∑
i=1

X N
k,i , k = 1, 2. (34)

X N
k,i is the signal sent by the node Sk in the i th layer.
For each layer, we use the nested lattice code described in

Section III. The signal X N
k,i is computed as:

X N
k,i =

(
uN

k,i + d N
k,i

)
mod �c,i k = 1, 2, i = 1, . . . , M (35)

where d N
k,i is the dithering vector. Let uN

k,i be the lattice point
such that:

uN
k,i ∈ V (�c,i

) ∩ �i , k = 1, 2. (36)

Note that both node S1 and S2 use the same lattice codebook
for each layer.

Define M as the set {1, . . . , M}. We use the shorthand AM
to represent a set of vectors Ai , i = 1, . . . , M . If the rate and
the power are allocated properly among different layers, the
intended receiver should be able to decode uN

1,M with high
probability. We denote the rate of the lattice codebook for
the i th layer with Ri and its power by Pi . The value of Ri

and Pi are established in Appendix B by (82)–(83) and (80)
respectively.

As before, we then view each group of N channel uses as
a single channel use and view uN

1,M as the effective inputs of
the equivalent channel. The distribution for uN

2,M is chosen
such that uN

2,i , i = 1, . . . , M are independent and are also
independent from uN

1,M. Each uN
2,i is uniformly distributed

over V (�c,i
) ∩ �i . Then, the signal transmitted by node S2

is independent between every block of N-channel uses. This
ensures the channel is memoryless over every N-channel uses
and hence the result (14) from [3] can be used to derive the
secrecy rate, i.e., secrecy rate Rs such that

0 ≤ Rs ≤ [ lim
N→∞

1

N
(I (uN

1,M; Y N
1 ) − I (uN

1,M; Y N
2 ))]+ (37)

is achievable. To compute the secrecy rate, again we resort
to deriving a lower bound to the right hand side of (37). We
choose the distribution of uN

1,M to be the same one as that
of uN

2,M. This means that uN
1,i , i = 1, . . . , M are independent

and each of them is uniformly distributed over V (�c,i
)∩ �i .

For this distribution,

lim
N→∞

1

N
H (uN

1,M) =
M∑

i=1

Ri . (38)

On the other hand, we know that, for a given M , uN
1,M can be

reliably decoded from Y N
1 . The decoding procedure is given in

Appendix B. Let Pe denote the probability of decoding error
which converges to 0 as N goes to ∞ 4. Then, by Fano’s
inequality [38], we have

1

N
H
(

uN
1,M|Y N

1

)
(39)

≤ 1

N

(
1 + Pe H (uN

1,M)
)

= 1

N
+ Pe

M∑
i=1

Ri . (40)

Therefore

lim
N→∞

1

N
I (uN

1,M; Y N
1 ) (41)

= lim
N→∞

1

N
(H (uN

1,M) − H
(

uN
1,M|Y N

1

)
) (42)

≥
M∑

i=1

Ri − 1

N
− Pe

M∑
i=1

Ri . (43)

By letting N → ∞, (38) and (41)-(43) imply:

lim
N→∞

1

N
(I (uN

1,M; Y N
1 ) =

M∑
i=1

Ri , (44)

where Ri is given by (83) in Appendix B.
The second term in (37) can be upper bounded as follows:

1

N
I
(

uN
1,M; Y N

2

)
(45)

≤ 1

N
I
(

uN
1,M; X N

1 ± X N
2

)
(46)

≤ 1

N

M∑
i=1

I
(

uN
1,i ; X N

1,i ± X N
2,i

)
(47)

≤ M. (48)

(46) follows from the fact that the channel noise is independent
from uN

1,M and X N
1 ± X N

2 . (47) is because the jamming
signal X N

2,i of different layers are independent from each other.
Finally, we apply (19)-(25) to each term inside the sum in (47)
to obtain (48).

Substituting (44) and (48) into (37), we find that the
following secrecy rate is achievable.

Rs = [∑M
i=1 Ri − M]+. (49)

We next apply the expression for Ri given in (82)-(83). This
leads to the secrecy rate (33) claimed in the theorem.

The total power consumed by node Sk , k = 1, 2 can be
computed by summing the expression for Pi in (80) from i = 1
to i = M , which leads to and is given by (30).

Hence we have completed the proof of the theorem.
Remark 5: Compared to Section III, the only difference

is a layered coding scheme is used as the inner code. The
outer code is still the stochastic wiretap coding scheme as
described in Section III. Codewords are sampled from the
M-fold Cartesian product of nested lattice code sets with a
uniform distribution, with M being the number of layers and
each component of the codeword is an M-tuple of lattice
points. �

4It can be shown that this property is retained when the dithering vectors
are fixed; see [31, Section 5.12] for details.
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Remark 6: Note that Pi in (80) is computed with random
dithering vectors. After fixing the dithering vector, the actual
power used by the i th layer is not necessarily Pi . How-
ever, it can be shown that by choosing the fixed dithering
vector properly, the difference in total power consumption
caused by fixing the dithering vectors can be made negligible
[31, Section 5.12]. �
From Theorem 2, we have the following corollary.

Corollary 2: The following number of secure degrees
of freedom is achievable using nested lattice codes when
0 < |γ | < 0.5:

[
1
4 log2 (α) − 1

1
2 log2 (αβ + 1)

]+
, (50)

where α and β are given by (31) and (32) respectively.
Proof: The corollary follows by substituting Ptotal and

Rs into (7) and letting M go ∞.
Remark 7: A layered coding scheme with lattice codes was

used in [37] for a K -user interference channel (K ≥ 3)
without secrecy constraints. The difference here from [37] is
that in [37], a sphere shaped lattice code is used for each layer.
Here, for each layer, a nested lattice code is used instead. As
a result, the corresponding decoding algorithm and the error
probability analysis are different. Reference [37] uses results
from [39]. The rate derivation in our work uses results from
reference [32]. �

A consequence of Corollary 2 is as follows:
Corollary 3: For

√
ab, such that 2

√
ab is not an integer

and 1/
√

ab is not an integer, the number of secure degrees of
freedom given by Corollary 2 is positive.

Proof: This corollary is proved in Appendix D.

V. ACHIEVING POSITIVE SECURE DEGREES OF FREEDOM

FOR CHANNEL GAINS NOT COVERED BY COROLLARY 3

Corollary 3 has shown that the secure degrees of freedom
(s.d.o.f.) for the Gaussian wiretap channel with a cooperative
jammer is positive with probability one if the channel gains
are sampled from a continuous distribution. We next show
how to achieve a positive s.d.o.f. for the cases not covered by
Corollary 3. This requires a different decoding algorithm to be
used at the intended receiver. For simplicity, the coding scheme
shall be described for use with lattices of one-dimension only,
as it is not clear how to prove the decodability for the general
N-dimensional lattice used in the previous sections.

For parameter Q, a one-dimensional lattice is composed
of points in the set [0, Q) ∩ Z where Z is the set of all
integers. The point can be scaled and shifted to obtain the
actual transmitted signal.

Theorem 3: Using a one-dimensional lattice, we have
achievable secure degrees of freedom results for the following
four cases:

1) When
√

ab is an algebraic irrational number, the secure
degrees of freedom of 1/2 is achievable.

2) When
√

ab ∈ (0, 1/2]∪[2,+∞), we have the following
result. Let Q = √

ab if
√

ab ≥ 2. Otherwise, let
Q = 1/

√
ab. Let Q� denote the largest integer smaller

than or equal to Q. The following secure degrees of
freedom is achievable:

[
1

2

log2 Q�
log2 Q

− f (Q�)
2 log2 Q

]+
(51)

where f (Q) is defined in (101). (51) is lower bounded
by

1

2

log2 Q�
log2 Q

−
log2

(
2πe

( 1
6

)− 1
12Q�2

)

4 log2 (Q)
. (52)

For Q = 2, (51) equals 1/4.
3) When

√
ab = 1 and Y2 = X1 − X2 + Z2, the secure

degrees of freedom of 0.0548 is achievable.
4) When

√
ab = 1.5, secure degrees of freedom of 1/6 is

achievable.

Proof: The proof for these four cases are provided in the
subsections of Appendix E.

Remark 8: When
√

ab = 1 and all channel gains are
positive, the channel is degraded and from the outer bound
in [27], the number of secure degrees of freedom is 0. Since
algebraic irrational numbers are dense on the real line, it
follows that the number of secure degrees of freedom is
discontinuous at

√
ab = 1. �

Theorem 3 and Corollary 3 together cover all possible
√

ab.
Hence, we arrive at the following corollary:

Corollary 4: For the channel model in (1), a positive num-
ber of secure degrees of freedom is achievable except for the
following case for which [10] proved this is not possible:

Y1 = X1 + X2 + √
bZ1

Y2 = X1 + X2 + Z2. (53)

VI. NUMERICAL RESULTS

We next provide numerical results for the rates in Theorem 2
and Theorem 3.

A. Secrecy Rate

In Fig. 2, we plot the secrecy rate versus power when

a = b =
√

2
3 , which makes

√
ab an algebraic irrational

number. The power Ptotal is the variance of X1 or X2 in (1).
For the integer lattice code, we use (114) to compute

the secrecy rate; this provides the largest secure degrees of
freedom, which is 1/2.

From (104) and (105), the average power of this coding
scheme is given by

Ptotal = P1/2+2ε Q2 − 1

12
. (54)

The first term in (54) is due to the scaling factor P1/4+ε

in (105). We then choose different values for ε and plot
the largest achievable power rate pair region in terms of
{10 log10 Ptotal, Rs} in Fig. 2.

For comparison, we also plot the largest possible secrecy
rate offered by Gaussian random codebooks presented in [27].
This is done by removing the power constraints of the trans-
mitters and computing the secrecy rate optimized over the
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Fig. 2. Secrecy Rate with Finite Power, a = b =
√

2
3 , Ptotal is the power

of X1 or X2 in (1). 1/2R is shown as a reference line.

transmission powers. Clearly, this serves as an upper bound on
the secrecy rate achievable in [27]. Since a = b = √

2/3 < 1,
this upper bound can be computed following the derivation in
[27, (11)]5. The power unconstrained secrecy rate offered by
the Gaussian random codebook is given by

lim
P̄k→∞,k=1,2

Rs = 1

2
log2

1

ab
. (55)

As shown by Fig. 2, the secrecy rate offered by the integer
lattice is greater than the power unconstrained Gaussian sig-
naling scheme when 10 log10 Ptotal > 30d B .

Finally, we plot, in Fig. 2, the secrecy rate offered by
the nested lattice code, by choosing different p, q values
and the number of layers M . The secrecy rate is computed
according to (33). Ptotal is given by (30). As expected,
different choices of p, q result in different slopes for the
secrecy rate curve, i.e., different secure degrees of freedom.
When 10 log10 Ptotal < 60d B , the nested lattice code can
achieve a larger secrecy rate than integer lattice code due to
its power efficiency. However, if Ptotal keeps increasing, the
secrecy rate offered by the integer lattice is the largest, due to
its higher achievable secure degrees of freedom.

To summarize, these results demonstrate that the coding
scheme presented in this paper can provide a larger secrecy
rate than random Gaussian signaling at medium to high SNR
values.

B. Secure Degrees of Freedom

It is clear that the integer lattice provides a larger value of
secure degrees of freedom for

√
ab values in Case 1), 3), 4)

in Theorem 3.
We next consider the remaining Case 2) in Theorem 3.
For clarity, we first plot in Fig. 3 the secure degrees

of freedom achieved by this case. The actual performance

5Reference [27] only considers the case Y2 = X1 + X2 + Z2. However,
since the Gaussian distribution is symmetric around zero, the case Y2 =
X1 − X2 + Z2 has the same secrecy rate with Gaussian input distributions.

Fig. 3. Secure degrees of freedom achieved by integer lattice coding scheme
in Theorem 3 Case 2.

Fig. 4. Comparison of secure degrees of freedom achieved by nested lattice
code (solid blue) and by integer lattice coding scheme in Theorem 3 Case 2
(dashed red).

curve in Fig. 3 corresponds to (51). The lower bound curve
corresponds to (52). The zigzag shape of the curve is a
consequence of the  � operation on Q in (51). We notice
as

√
ab moves away from 1, the lower bound given by (52)

becomes tighter, and the number of secure degrees of freedom
converges to 0.5.

We next compare it with the secure degrees of freedom
achieved by nested lattice code in Fig. 4. As shown by Fig. 4,
neither scheme dominates the other in performance for all
channel gains. The nested lattice code offers a larger number
of secure degrees of freedom near the peak of spurs, while
the integer lattice coding scheme described in this section is
superior when 2

√
ab are integers and

√
ab ≥ 2.

Remark 9: The smallest known upper bound on the number
of secure degrees of freedom is found in [31] to be 2/3, which
still has a nonzero gap from 1/2.

VII. CHANNEL GAIN MISMATCH

The coding schemes presented in previous sections require
aligning lattice points at the eavesdropper, which relies on
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Fig. 5. Wiretap channel with a cooperative jammer S2, where the channel
gain between S1 and D1 has an estimation error αi , α

′
i ∈ [−αmax, αmax] for

the ith channel use. αi and α′
i are known by D2 but not known by S1 or S2.

accurate channel state information. It is conceivable that
in practice such accurate channel state information may be
difficult to obtain and it is reasonable to ask if the nested lattice
coding scheme is still able to provide secrecy with imperfect
channel state information. In this section, we explain how to
compute the secrecy rate in this case.

The channel model is shown in Fig. 5. This is the same
channel model we have been using except now, the channel
gain between S1 and D2 has an estimation error αi for the
i th channel use and the channel gain between S2 and D2 has
an estimation error α′

i for the i th channel use. For simplicity,
we assume the remaining channels are estimated perfectly. The
channel estimation errors, αi , α

′
i , are independent from the sig-

nal transmitted by node S1 and S2, and αi , α
′
i ∈ [−αmax, αmax].

αmax > 0. We also assume the eavesdropper, node D2, has
perfect knowledge of αi , α

′
i , but the other nodes only know

αmax. In this setting, perfect channel state information at the
eavesdropper is obviously a pessimistic assumption and is a
measure of worst case performance.

With these assumptions, we have the following theorem:
Theorem 4: Let P̄1 = P̄2 = ρ be the total power consump-

tion for node S1 and S2. The same number of secure degrees
of freedom given by Theorem 2 is achievable if for a constant
c > 0,

α2
max ≤ c

ρ
. (56)

Proof: The proof is given in Appendix F.
Remark 10: Imperfect channel state information for other

links, for example, on the link between legitimate trans-
mission pair S1 and D1 can be catered to by using the
existing results for the model without secrecy constraints
in [40, Section IV]. �

VIII. CONCLUSION

Structured codes were shown to be useful in a number of
information theory problems. In this work, we have shown that
structured codes are useful with cooperative jamming to prove
higher achievable secrecy rates. For a Gaussian wiretap chan-
nel with a cooperative jammer, we have proved that a positive
number of secure degrees of freedom is achievable as long
as the channel is not degraded and is fully connected. Since
the considered channel model is a special case of the multiple
access wiretap channel, the two-user interference channel with

confidential messages, and the two-user interference channel
with an external eavesdropper, this result implies that the
secure degrees of freedom for all these channels are positive
as well. This is in contrast to earlier literature where Gaussian
signaling was used and the achieved secure degrees of freedom
was zero.

APPENDIX A
PROOF OF THEOREM 1

Let V be the fundamental Voronoi region of the
N-dimensional lattice �. For any set A, define αA as αA =
{αx : x ∈ A}. Then we have:

{
K∑

k=1

t N
k : t N

k ∈ V, k = 1...K } = KV . (57)

Theorem 1 follows if there are exactly K N points in
KV mapped to the same point in V by the modulus �
operation. By (57), each point in KV can be expressed as

K∑
k=1

t N
k , t N

k ∈ V . After the modulus � operation, it is mapped

to t ′N 	=
K∑

k=1
t N
k mod �. These two points are related by:

t ′N =
K∑

k=1

t N
k + x N , for some x N ∈ �. (58)

Hence we need to show there are exactly K N possible lattice
points for x N for which we can find t N

k ∈ V, k = 1...K such
that (58) holds. This is equivalent to finding x N s that satisfy
the following equation:

t ′N − x N ∈ KV, x N ∈ �. (59)

To show that there are exactly K N x N ’s in � that sat-
isfy (59), we need to examine the structure of lattice �. Each
point in the lattice, by definition, can be represented in the

following form [41]: x N =
N∑

i=1
aiv

N
i , vN

i ∈ RN , ai ∈ Z.

{ai} is said to be the coordinates of the lattice point x under
the basis described by vectors {vN

i }. The set of basis vectors
{vN

i } is a fundamental characterization of a lattice and does not
change between lattice points. Based on this representation, we
can define the following relationship ∼: Consider two points
x N , y N ∈ �, with coordinates {ai} and {bi } respectively. Then
x N ∼ y N if ai = bi mod K , i = 1...N . It is easy to see
the relationship ∼ is an equivalence relationship. Therefore, it
defines a partition over �. A partition defined in this way has
the following properties:

1) There are K N sets in this partition. This is because
ai mod K can take values 0, 1, 2, . . . , K − 1 and the
coordinate {ai } has N components.

2) The sub-lattice K� corresponds to one set in the par-
tition for which ai mod K = 0, i = 1, . . . , N . The
remaining K N − 1 sets are its cosets.

Let Ci denote any one of these cosets or K�. Then Ci can
expressed as Ci = K� + y N

i , y N
i ∈ �. It is easy to verify

that {x N + KV, x N ∈ Ci } is a partition of K RN + y N
i , which

equals RN .
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We now return to solve (59). Since Ci , i = 1, ..., K N is a
partition of �, (59) can be solved by considering the following
K N equations:

t ′N − x N ∈ KV, x N ∈ Ci (60)

This is equivalent to saying t ′N ∈ x N +KV for some x N ∈ Ci .
Since {x N +KV, x N ∈ Ci } is a partition of RN , there is exactly
one x N ∈ Ci that satisfies this requirement. This implies that
for a given t ′N , and a given coset Ci , (60) has exactly one
solution for x N . Since there are K N Ci ’s and hence K N such
equations given by (60) each yielding a distinct solution for
x N , equation (59) has exactly K N solutions. By letting T to
be the integer that indexes these K N solutions, we obtain the
theorem.

APPENDIX B
THE LATTICE DECODER FOR THEOREM 2

In this section, we describe the decoding procedure at
node D1 and compute the rate and power for each layer in the
layered coding scheme used in the proof of Theorem 2. We
leave the technical details of decoding nested lattice codes to
Appendix C for the interested reader and focus on the power
and rate computation for the layered coding scheme in this
section.

Let Ri be the rate of the codebook for the i th layer:

Ri = 1

N
log2 |V (�c,i

) ∩ �i |. (61)

We assume in this appendix that d N
k,i is uniformly distributed

over V (�c,i
)
, perfectly known by all receiving nodes and

independently generated for each node, each layer and each
block of N channel uses. As we explained in Remark 2,
this technical detail is necessary to show the decodability of
the lattice code, and after proving decodability, they can be
replaced with fixed vectors.

Since d N
k,i is uniformly distributed over V (�c,i

)
, the average

power per dimension of the i th layer Pi can be computed as:

Pi = 1

N vol(V (�c,i
)
)

∫

x∈V(�c,i)
‖x‖2

2 dx (62)

where vol(V (�c,i
)
) is the volume of the set V (�c,i

)
.

We label layers with 1, . . . , M . The main idea is to decode
the higher layer, subtract its contribution, and then continue
to process the lower layers.

As shown in (28), Node D1 receives qY1, which, due
to (34), can be written as:

qY1 =
M∑

t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1 . (63)

Assume that node D1 has successfully decoded layers whose
index is greater than i and now is ready to decode layer i .
This means that the decoder at node D1 can subtract the
contribution from the former layers to obtain:

i∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1 . (64)

Since p and q are both positive integers, quN
1,i + puN

2,i mod
�c,i ∈ �i ∩ V(�c,i ). Node D1 will first decode the integer
part quN

1,i + puN
2,i mod �c,i and then decode the fractional part

γ uN
2,i .
To decode quN

1,i + puN
2,i mod �c,i , D1 computes

Ŷi = (65)⎡
⎢⎣

(
quN

1,i + puN
2,i

)
+ γ X N

2,i

+
i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1

⎤
⎥⎦ mod �c,i (66)

from (64) since it knows d N
1,i and d N

2,i .
Define Ai as

Ai =
i−1∑
t=1

(
q2 + (p + γ )2

)
Pt + q2b. (67)

Then, from Lemma 1 in Appendix C, the probability that D1
does not correctly decode quN

1,i + puN
2,i mod �c,i decreases

exponentially fast with the lattice dimension N if

Ri ≤ 1

2
log2

(
Pi

γ 2 Pi + Ai

)
. (68)

where γ 2 Pi + Ai is the variance of the term treated as

noise which is γ X N
2,i +

i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+q

√
bZ N

1 .

It is independent from the signal term quN
1,i + puN

2,i mod �c,i

thanks to the dithering vector d N
2,i , hence the requirement of

Lemma 1 is satisfied.
After decoding quN

1,i + puN
2,i mod �c,i , node D1 can

recover:

[γ X N
2,i +

i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1 ] mod �c,i

(69)

from (66). Then, we use the fact that as long as

Pi > γ 2 Pi + Ai , (70)

(69) equals

γ X N
2,i +

i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1 (71)

with high probability. This fact is formally proved in Lemma 2
in Appendix C.

If (69) does not equal (71), a decoding error occurs.
Node D1 then evaluates the following expression from (71):
⎡
⎢⎢⎢⎣

k

⎛
⎝

i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)

+γ X N
2,i + q

√
bZ N

1

⎞
⎠

−γ d N
2,i

⎤
⎥⎥⎥⎦ mod γ�c,i (72)

=
⎡
⎣

γ uN
2,i + (k − 1) γ X N

2,i+
k

(
i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1

)
⎤
⎦mod γ�c,i

(73)
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where the scaling variable k is the Minimum Mean Squared
Error (MMSE) coefficient introduced to minimize the variance
per dimension of the term

(k − 1) γ X N
2,i + k

(
i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1

)
.

(74)

(74) is called the effective noise in [32] and its minimum
variance per dimension with the optimal k is given by:

γ 2 Pi Ai

γ 2 Pi + Ai
. (75)

The same scaling scheme was used in [32], see α in [32, (13)].
Node D1 can correctly decode uN

2,i from (73) with high
probability if

Ri ≤ 1

2
log2

⎛
⎝ γ 2 Pi(

γ 2 Pi Ai
γ 2 Pi+Ai

)
⎞
⎠ = 1

2
log2

(
1 + γ 2 Pi

Ai

)
. (76)

Again this is a consequence of applying Lemma 1.
After decoding uN

2,i , node D1 can recover the following
signal from (71):

i−1∑
t=1

(
q X N

1,t + (p + γ ) X N
2,t

)
+ q

√
bZ N

1 (77)

which is identical to (64) with i replaced by i − 1. This will
be used by D1 when decoding lower layers.

We next determine the power Pi and the rate Ri of each
layer. As in [37], [42], we let the right hand side of (68) equal
the right hand side of (76):

Pi

γ 2 Pi + Ai
= 1 + γ 2 Pi

Ai
. (78)

It is easy to check that, with α = 1−2γ 2+
√

1−4γ 2

2γ 4 , (78) has the

following solution6:

Pi = αAi . (79)

This leads to (31) in Theorem 2. For α to be a real number,
we require 1 − 4γ 2 ≥ 0, which means |γ | ≤ 0.5.

By solving (79) and (67), we find that Pi is given by:

Pi = α (αβ + 1)i−1 q2b (80)

where β = q2 + (p + γ )2. This leads to (32).
For this power allocation, Ai is given by

Ai = (αβ + 1)i−1 q2b. (81)

Due to (78), Ri can be found by averaging (68) and (76) and
substituting (80) and (81) into the result:

Ri = 0.5

2
log2

(
Pi

γ 2 Pi + Ai

)
+ 0.5

2
log2

(
1 + γ 2 Pi

Ai

)
(82)

= 0.5

2
log2

(
Pi

Ai

)
= 0.25 log2 (α) . (83)

6The other solution is when α = 1−2γ 2−
√

1−4γ 2

2γ 4 . It turns out this solution

does not achieve positive secrecy rate.

It remains to check the requirement (70). To do that, we
substitute (79) into (70) and get(

1 − γ 2
)

α > 1 (84)

where α can be expressed in terms of γ as shown in (31). It
can be verified that the left hand side of (84) is always greater
than 1 if |γ | < 0.5. Hence (70) is satisfied.

Remark 11: We scaled the signal by k in (73) before
performing the modulus operation. Doing so offers a slight
gain in secure degrees of freedom than simply choosing k = 1.

The scaling operation could also have been done in (66).
However, the optimal scaling factor has a more complicated
expression and it is difficult to derive an analytical expres-
sion for the secure degrees of freedom if this approach is
followed. �

APPENDIX C
SOME USEFUL RESULTS ON DECODING

NESTED LATTICE CODES

In this section, we introduce the supporting results used in
Appendix B which provide the rate constraint when decoding
a lattice point from a signal under additive interference from
other lattice points.

Consider a nested lattice pair {�,�p,0}. �p,0 ⊂ �. Define
t N as a lattice point in � ∩ V(�p,0), which is of interest to
the decoder. The decoder observes Y N given by

Y N =
(

t N +
K∑

i=1

U N
i + Z N

)
mod �p,0 (85)

for K ≥ 0, where Z N is the additive channel noise vector
composed of zero mean i.i.d. Gaussian random variables, each

with variance σ 2.
K∑

i=1
U N

i represents the interference in the

observation where U N
i is a random variable uniformly distrib-

uted over the fundamental Voronoi region of a lattice denoted

by �p,i . By definition,
0∑

i=1
U N

i = 0. For convenience, we

also define U N
0 which is uniformly distributed over V(�p,0).

We assume U N
i , i = 0, . . . , K and Z N are independent

and the lattices �p,i , i = 0, . . . , K are Rogers-good for
covering [43, Section I.B] and Poltyrev-good for channel
coding [43, Section III.D].

The power of the interference is measured by σ 2(Ui ) which
is the variance per dimension of U N

i . When N increases, we
scale � and �p,i , i = 0, . . . , K such that σ 2(Ui ) remains
unchanged.

Define t̃ N as the value for t N decoded from Y N using an
Euclidean distance decoder. Then we have the following result:

Lemma 1: When K ≥ 1, Y N is given by (85), and

R0 <
1

2
log2

⎛
⎜⎜⎜⎝

σ 2 (U0)

σ 2 +
K∑

i=1
σ 2 (Ui )

⎞
⎟⎟⎟⎠, (86)

for each N dimensions, there exist lattices �,�p,i ,
i = 0, ..., K such that Pr(t N �= t̃ N ) decreases exponentially
fast with N .
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Proof: The proof is done by approximating the interfer-
ence U N

i with Gaussian noise. Define O N
i , i = 1, . . . , K , as

zero mean Gaussian random variables such that

O N
i ∼ N (0, σ 2(O N

i )I) (87)

where I is an N × N identity matrix. σ 2(O N
i ) is a scalar

chosen as the variance per dimension of a random variable
uniformly distributed over the smallest ball covering V(�p,i).
Then from [32, Lemma 6], there exists lattice �p,i such that
this variance approaches the variance of the uniform variable
over the Voronoi region:

lim
N→∞ σ 2

(
O N

i

)
= σ 2 (Ui ) . (88)

Let fX (x) denote the probability density function of any
continuous random variable X . We first use the following fact
shown in [32, (200)]:

fU N
i

(x) ≤ eNε(�p,i ) fO N
i

(x) (89)

which approximates U N
i with the Gaussian random variable

O N
i . ε

(
�p,i

)
is defined [32, (67)], which was shown therein

to have the following property:

lim
N→∞ ε

(
�p,i

) = 0. (90)

Define U N
sum =

K∑
i=1

U N
i and O N

sum =
K∑

i=1
O N

i . From (89),

since U N
i , i = 1, . . . , K , Z N are independent, we have

fU N
sum+Z N (x) ≤ e

N
K∑

i=1
ε(�p,i)

fO N
sum+Z N (x) (91)

which means:

Pr

(
K∑

i=1

U N
i + Z N /∈ V (�)

)
(92)

≤ e
N

K∑
i=1

ε(�p,i )
Pr

(
K∑

i=1

O N
i + Z N /∈ V (�)

)
. (93)

Since
K∑

i=1
O N

i + Z N is an i.i.d. Gaussian vector, we can show

that, for a given K ,

Pr

(
K∑

i=1

O N
i + Z N /∈ V (�)

)
(94)

decreases exponentially fast with N if

R0 <
1

2
log2

⎛
⎜⎜⎜⎝

σ 2 (U0)

σ 2 + limN→∞
K∑

i=1
σ 2
(
O N

i

)

⎞
⎟⎟⎟⎠ , (95)

by repeating the proof of [32, Theorem 5] when we choose the
scalar α defined therein to be 1. The right hand side of (95)
becomes (86) after applying (88). This and (90) together imply
that (93) decreases exponentially fast with N . Therefore (92)
decreases exponentially fast with N . Since (92) is an upper
bound on Pr(t N �= t̃ N ), we have proved Lemma 1.

The following result is adapted from [32, (89)].
Lemma 2: Define μ as

μ = σ 2 (U0)

σ 2 +
K∑

i=1
σ 2 (Ui )

. (96)

Then if μ > 1, the probability

Pr

(
K∑

i=1

U N
i + Z N mod �p,0 �=

K∑
i=1

U N
i + Z N

)
(97)

decreases exponentially fast with respect to N .
Proof: (97) is upper bounded by

Pr

(
K∑

i=1

U N
i + Z N /∈ V (�p,0

))
(98)

which, in turn, by following similar steps which lead to (93),
is upper bounded by

e
N

K∑
i=1

ε(�p,i)
Pr

(
K∑

i=1

O N
i + Z N /∈ V (�p,0

))
. (99)

Since �p,0 is taken from the lattice code ensemble defined in
[32, Section VII], according to [32, (78)], we have

Pr

(
K∑

i=1

O N
i + Z N /∈ V (�p,0

)
)

≤ e−N(EP (μ)−oN (1)) (100)

where E P(μ) is the Poltyrev exponent defined in [32, (56)].
oN (1) is any function of N such that limN→∞ oN (1) = 0
[32, Section I]. Since E p(μ) is positive for μ > 1, we have
proved Lemma 2.

APPENDIX D
PROOF OF COROLLARY 3

We first verify Corollary 3 holds for interval 1 ≤ √
ab ≤ 2.

The value of (50) is plotted in Fig. 6 for 1 <
√

ab < 2. To
prove that (50) is positive in this range, it suffices to choose
(p = 1, q = 1), (p = 2, q = 1), (p = 3, q = 2), and let√

ab = p/q + γ /q . A higher secure number of degrees of
freedom can be achieved by choosing other values for p, q ,
but for clarity, these curves are not plotted in Fig. 6.

Note that for a fixed pair of p, q , by changing γ , (50) takes
the shape of a spur. Fig. 6 includes three such spurs. The value
of (50) converges to 0.5 when γ converges to 0. However,
since γ �= 0, the peak of the spur is not included. Hence
a positive number of secure degrees of freedom cannot be
guaranteed by Corollary 2 only when

√
ab = 1, 1.5 or 2.

We next argue that Corollary 3 holds for interval i ≤ √
ab ≤

i +1 for all integer i , i ≥ 1. This follows from the fact that the
denominator of (50) is always positive. Hence the positivity
of (50) is only determined by its numerator, which is only
a function of γ . When i ≤ √

ab ≤ i + 1, we can simply
choose the following three pairs of (p, q): (p = i, q = 1),
(p = i + 1, q = 1), and (p = 2i + 1, q = 2). The positivity
of (50) in this interval [i, i + 1] should be the same as the
positivity of (50) in interval [1, 2]. Since (50) is verified to
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Fig. 6. The value of (50) when 1 <
√

ab < 2. The red dashed line is the
contour.

Fig. 7. The value of (50) when 1/2 <
√

ab < 1. The red dashed line is the
contour.

be positive in interval [1, 2] except for the cases stated in
Corollary 3, the same case holds for interval [i, i + 1].

We next verify Corollary 3 holds for the interval 1/2 ≤√
ab ≤ 1. The value of (50) is plotted in Fig. 7. The two

spurs in Fig. 7 follows from choosing p = 1, q = 1, and
p = 1, q = 2.

Finally we consider the interval 1/(i +1) ≤ √
ab ≤ 1/ i for

i ≥ 1. For this interval, we can choose p = 1, q = i + 1
and p = 1, q = i . Again, since the positivity of (50) is
only determined by γ , Corollary 3 holds for this interval
[1/(i + 1), 1/ i ] since it holds for interval 1/2 ≤ √

ab ≤ 1.
Hence we have completed the proof of Corollary 3.

APPENDIX E
PROOF OF THEOREM 3

A. A Supporting Result

In this section, we present a supporting result. We consider
the value of the following function:

f (Q) = I (X1; X1 ± X2) (101)

where Xi , i = 1, 2 is uniformly distributed over [0, Q) ∩ Z.
f (Q) can be bounded by the following lemma:

Lemma 3:

f (Q) ≤ 1

2
log2(2πe(

1

6
− 1

12Q2 )) <
1

2
log2(

πe

3
) < 0.8.

(102)

Proof: Equation (102) follows from [22, Lemma 12].
H (X1 + X2) can be bounded as

H (X1 + X2) ≤ 1

2
log2(2πe(2P ′ + 1

12
)) (103)

where P ′ is the variance of Xk, k = 1, 2, which is given by

P ′ = 1

Q

⎡
⎣

Q−1∑
k=0

k2

⎤
⎦−

⎡
⎣

Q−1∑
k=0

k/Q

⎤
⎦

2

= Q2 − 1

12
. (104)

Substituting (104) into (103) we get (102).
As shown by (102), the leakage rate is smaller than the 1-bit
bound for the nested lattice code, which suggests that integer
lattice codes may be useful for cases where the secrecy rate
offered by the nested lattice code is 0.

B. Proof of Theorem 3 Case 1

The proof for Theorem 3 Case 1 uses the Diophantine
approximation theory [22]. We start with the same integer
lattice as in [22, Theorem 1]. Let �P,ε be the scalar lattice
defined as:

�P,ε =
{

x : x = P1/4+εz, z ∈ Z
}

. (105)

The set of integer lattice points we use is denoted with CP,ε

and is given by:

CP,ε = �P,ε ∩
[
−√

P,
√

P
]

(106)

where P = min{P̄1, P̄2}. Hence
⌈−P1/4−ε

⌉ ≤ z ≤ ⌊P1/4−ε
⌋

,
where � � and  � denote the ceiling and floor operation.
|CP,ε| ≥ 2

(
P1/4−ε − 1

)+ 1 = 2P1/4−ε − 1. This means that,
for large enough P , we can write:

log2 |CP,ε| ≥ log2

(
2P1/4−ε − 1

)
≥ log2

(
P1/4−ε

)
. (107)

The same set of lattice points is used by both nodes S1 and S2
as the alphabet sets of input signals.

We use a uniform distribution over CP,ε as the input
distribution for S2 and let the input X2 from S2 be an i.i.d.
sequence. The channel then becomes a memoryless wiretap
channel and the secrecy rate then follows by applying the
result (14) from [3], i.e., any secrecy rate Rs such that

0 ≤ Rs ≤ [I (X1; Y1) − I (X1; Y2)]+ (108)

is achievable. Hence to compute the achievable secrecy rate,
we need to find a lower bound to the right hand side of (108).

According to [22, Theorem 1], Pr(X1) is chosen to be a
uniform distribution over CP,ε. Therefore

H (X1) = log2
(|CP,ε|

)
. (109)



HE AND YENER: PROVIDING SECRECY WITH STRUCTURED CODES 2133

From [22, Theorem 1], when

P >
1

a2b2 , (110)

we have

H (X1|Y1) ≤ 1 + 2 exp
(
− P2ε

8b

)
log2

(|CP,ε|
)
. (111)

The fact that
√

ab is algebraic irrational is used in
[22, Theorem 1], which uses a result from Diophantine approx-
imation. (110) is due to [22, Lemma 2]. b in (111) is due to
the fact that the variance of the Gaussian noise contained in
Y1 is b instead of unity.

From (109) and (111), we have:

I (X1; Y1) ≥
(

1 − 2 exp

(
− P2ε

8b

))
log2

(|CP,ε|
)− 1. (112)

Since CP,ε is simply a scaled and shifted version of the integer
lattice code, we can use Lemma 3 to bound I (X1; Y2):

I (X1; Y2)≤ I (X1; Y2, Z2)= I (X1; X1 ± X2)= f (Q) ≤ 0.8

(113)

where f (Q) is defined in (101). Q is determined by the range
of z in (105). Hence Q = 2P1/4−ε� + 1. The last inequality
in (113) follows from Lemma 3. Using (112) (113), and (107),
we find (108) is lower bounded by
[(

1 − 2 exp

(
− P2ε

8b

))(
1

4
− ε

)
log2 (P) − 1 − f (Q)

]+

(114)

for sufficiently large P . Since 0 ≤ f (Q) < 0.8, and ε can
be any value between (0, 1/4), using the definition in (7), we
find that the number of achieved secure degrees of freedom
is 1/2. Hence we have completed the proof.

C. Proof of Theorem 3 Case 2

In this appendix, we provide the proof for Theorem 3
Case 2. Here we use a Q-bit expansion scheme similar to
the one in [19].

We begin by considering the case when
√

ab ≥ 2. For this
case, let Q = √

ab and

Xk = √P0

M−1∑
i=0

ak,i Q2i , k = 1, 2, (115)

where M is a constant positive integer, P0 is a constant scaling
factor. Both are related to the variance of Xk . ak,i is uniformly
distributed over [0, Q� − 1] ∩ Z. Due to the range limit
imposed on ak,i , we observe that ak,i is uniquely determined
by Xk .

The signal received by node D1 is given by

Y1 =
√

P0(

M−1∑
i=0

a1,i Q2i +
M−1∑
i=0

a2,i Q2i+1) + √
bZ1. (116)

We then derive a lower bound to [I (X1; Y1) − I (X2; Y2)]+
as we did for Theorem 1.

I (X1; Y1) can be lower bounded by following
a similar derivation from [22, Theorem 1]. Define

Ck = {√P0

M−1∑
i=0

ak,i Q2i : ak,i ∈ [0, Q� − 1] ∩ Z},
k = 1, 2. We use the same maximum likelihood decoder used
in [22, Theorem 1]:

Ŷ1 = arg min
X1+Q X2, s.t. Xk∈Ck ,k=1,2

|Y1 − (X1 + QX2)|2. (117)

It is clear that given Ŷ1, there is a unique pair of X1, X2 such
that X1 + QX2 = Ŷ1. Let this mapping from Ŷ1 to X1 be f .
Define binary random variable A such that

A =
{

0 if |√bZ1| <
√

P0/2
1 otherwise

(118)

Note that if A = 0, we have X1 = f (Ŷ1). For this definition
of A, we have

H
(

X1|Ŷ1

)
≤ H

(
X1, A|Ŷ1

)
(119)

= H
(

A|Ŷ1

)
+ H

(
X1|Ŷ1, A

)
(120)

≤ 1 + Pr (A = 1) H
(

X1|Ŷ1, A = 1
)

+ Pr (A = 0) H
(

X1|Ŷ1, A = 0
)

(121)

= 1 + Pr (A = 1) H
(

X1|Ŷ1, A = 1
)

(122)

≤ 1 + Pr (A = 1) H (X1|A = 1) (123)

= 1 + Pr (A = 1) H (X1) . (124)

(124) is because A is independent from X1. Pr(A = 1) is
bounded as follows:

Pr (A = 1) =
∫

|t |≥√
P0/2

1√
2πb

exp

(
− t2

2b

)
dt (125)

≤ 2 exp

(
− P0

8b

)
. (126)

Substituting into (124), we get:

H
(

X1|Ŷ1

)
≤ 1 + 2 exp

(
− P0

8b

)
H (X1) . (127)

Therefore I (X1; Y1) is lower bounded as:

I (X1; Y1) ≥ I
(

X1; Ŷ1

)
(128)

≥
(

1 − 2 exp

(
− P0

8b

))
H (X1) − 1. (129)

For I (X1; Y2), we have:

I (X1; Y2) ≤ I (X1; X1 ± X2)

≤
M−1∑
i=0

I (a1,i ; a1,i ± a2,i ) = M f (Q�). (130)

For X1 defined in (115), we have H (X1) = M log2 Q�.
Substituting it into (129) and combining it with (130), we
find, from (108), that the following secrecy rate is achievable.

Rs =[M(1−2 exp(− P0

8b
))(log2 Q�)−1−M f (Q�)]+. (131)
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The transmission power is given by:7

V ar [Xk] = P0

( Q�2−1
12

) M−1∑
i=0

Q4i (132)

= P0

( Q�2−1
12

)
Q4M −1
Q4−1

. (133)

The secure degrees of freedom can then be computed by
substituting the transmission power (133) and the secrecy rate
(131) into (7), which yields:

lim
M→∞

[
((

1 − 2 exp
(
− P0

8b

))
log2 Q� − f (Q�)

)
M]+

1
2 log2

(
Q4M

)
(134)

= [1

2

(
1 − 2 exp

(
− P0

8b

))
log2 Q�
log2 Q

− f (Q�)
2 log2 (Q)

]+.

(135)

(135) can be made arbitrarily close to (51) by choosing a large
enough P0. (52) then follows from (51) via Lemma 3.

When Q = 2, it can be verified that f (Q�) = 0.5, and
(135) can be made to be arbitrarily close to 1/4.

The case of 1/
√

ab ≥ 2 can be proved in a similar

fashion. Let 1/
√

ab = Q and let Xk = Q
√

P0

M−1∑
i=0

ak,i Q2i ,

k = 1, 2. Then all previous derivations apply. In particular,
(116) becomes:

Y1 = √P0(

M−1∑
i=0

a1,i Q2i+1 +
M−1∑
i=0

a2,i Q2i ) + √
bZ1 (136)

and (117) becomes:

Ŷ1 = arg min
X1+X2/Q, s.t. Xk∈Ck ,k=1,2

|Y1−(X1 + 1

Q
X2)|2. (137)

The achieved secrecy rate remains the same. The transmission
power is scaled by Q2:

V ar [Xk] = Q2 P0

(
Q�2−1

12

)
Q4M −1

Q4−1
, k = 1, 2. (138)

Hence the number of secure degrees of freedom is still given
by (52) when Q > 2 and 1/4 when Q = 2.

D. Proof of Theorem 3 Case 3

Let Xk be given by (115) in Section E-C with Q = 2.
However, unlike (115), here ak,i is not chosen to be uniformly
distributed over {0, 1}. Instead, we choose its distribution to
maximize

I (a1,i ; a1,i + a2,i ) − I (a1,i ; a1,i − a2,i). (139)

Let cI denote the value of (139) when Pr(a1,i = 1) = 0.1443,
Pr(a2,i = 1) = 0.8557. The value of cI is close to and greater
than 0.1095. We next derive the achievable secrecy rate by
deriving a lower bound on [I (X1; Y1) − I (X2; Y2)]+. Define

7In case it is desired for Xk to have zero mean, we can simply shift Xk by
a constant, which will not alter the secrecy rate.

Ck = {√P0

M−1∑
i=0

ak,i Q2i : ak,i ∈ {0, 1}}, k = 1, 2. Define

f (Y1) as

f (Y1) = arg min
X1+X2:Xk∈Ck ,k=1,2

|Y1 − (X1 + X2)|2. (140)

Then:

I (X1; X1 + X2) − I (X1; f (Y1))

≤ I (X1; X1 + X2| f (Y1)) (141)

≤ H (X1 + X2| f (Y1)) (142)

≤ 1 + 2 exp

(
− P0

8b

)
H (X1 + X2) . (143)

Inequality (143) follows from (119)-(124) with Ŷ1 replaced by
f (Y1) defined in (140), and X1 replaced with X1 + X2. Then
we have

I (X1; Y1)

≥ I (X1; f (Y1)) (144)

≥
(

1 −
(

2 exp

(
− P0

8b

)))
H (X1 + X2) − H (X2) − 1

(145)

= I (X1; X1 + X2) − 1 − 2 exp

(
− P0

8b

)
H (X1 + X2)

(146)

=
M−1∑
i=0

I
(
a1,i; a1,i + a2,i

)− 1

−2 exp

(
− P0

8b

) M−1∑
i=0

H
(
a1,i + a2,i

)
. (147)

In (145) we use the fact that X1 is independent from X2
and apply the result from (143). (147) is because there is a
one-to-one mapping between X1 + X2 and {a1,i + a2,i , i =
0, . . . , M − 1}.

For I (X1; Y2), we have

I (X1; Y2) ≤ I (X1; X1 − X2) (148)

≤
M∑

i=1

I
(
a1,i; a1,i − a2,i

)
. (149)

Therefore

I (X1; Y1) − I (X1; Y2)

≥
M∑

i=1

(
I
(
a1,i; a1,i + a2,i

)− I
(
a1,i ; a1,i − a2,i

))− 1

− 2 exp

(
− P0

8b

) M−1∑
i=0

H
(
a1,i + a2,i

)
(150)

= McI − 1 − 2 exp

(
− P0

8b

)
M H

(
a1,i + a2,i

)
. (151)

Let Va,k be the variance of ak,i . Then we have

V ar [Xk] = P0Va,k
Q4M − 1

Q2 − 1
, k = 1, 2. (152)
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Hence the number of secure degrees of freedom is given by:

lim
M→∞

[I (X1; Y1) − I (X1; Y2)]+
1
2 log2 V ar [Xk]

(153)

= [cI

2
− exp

(
− P0

8b

)
H
(
a1,i + a2,i

)]+. (154)

We can always choose a large enough P0 to make the secure
degrees of freedom to be arbitrarily close to cI

2 > 0.0548. This
completes the proof of Theorem 3 Case 3).

E. Proof of Theorem 3 Case 4

Here we mimic the coding scheme in Section IV when
p = 1, q = 1. Note that positive secure degrees of freedom
can not be achieved by the nested lattice code in Section IV
in this case. This is mainly a consequence of leaking 1 bit
per layer in the layered coding scheme. Here, we replace the
nested lattice code with Q-bit expansion similar to the one
used in Appendix E-C and leverage the fact that integer lattice
leaks less than 0.8 bit per layer, and show that positive secure
degrees of freedom are achievable.

Let Xi be:

Xk = √P0

3M−1∑
i=0

ak,i Qi , k = 1, 2 (155)

where Q = 2. M is a positive integer and P0 is a positive
constant as defined in the proof of Theorem 2. Choose ak,i

such that

ak,i = 0, if i mod 3 = 1 or 2, (156)

otherwise ak,i is uniformly distributed over {0, 1}. Here ak,i

is forced to be zero at i mod 3 = 1 or 2 to make room
for 0.5a2, j ,∀ j mod 3 = 0 and the carry-over from a1, j +
a2, j ,∀ j mod 3 = 0.

Define Ck as the collection of points Xk defined by (155).
Define Ŷ1 as

Ŷ1 =arg min
X1+1.5X2, s.t. Xk∈Ck ,k=1,2

|Y1−(X1+1.5X2)|2. (157)

With this new definition of Ŷ1, the same derivation that leads
to (129) applies, where H (X1) = M . On the other hand:

I (X1; Y2) ≤ I (X1; X1 ± X2) (158)

≤
3M−1∑

i=0

I
(
a1,i ; a1,i ± a2,i

) = 0.5M. (159)

From (129), (159) and (108), the following secrecy rate is
achievable:

[(
1 − 2 exp

(
− P0

8b

))
M − 1 − 0.5M

]+
. (160)

The transmission power is given by

V ar [Xk] = P0
Q2 − 1

12

M−1∑
i=0

Q6i = P0

4

Q6M − 1

Q6 − 1
(161)

Fig. 8. Fig. 5 with an enhanced eavesdropper channel.

for Q = 2. The number of secure degrees of freedom is hence
given by:

lim
M→∞

(
1 − 2 exp

(
− P0

8b

))
M − 1 − 0.5M

1
2 log2

(
Q6M

) (162)

= 1

3

(
1 − 2 exp

(
− P0

8b

)
− 0.5

)
(163)

which can be made arbitrarily close to 1/6 by choosing a large
enough P0.

Remark 12: This scheme can be extended to the case when√
ab = 1+1/Q with Q being an integer greater than 2. In this

case, we let ak,i = 0 if i mod 2 = 1. Otherwise ak,i is taken
from [0, Q−1]∩Z. However, to make room for the carryovers,
the least significant bit of the binary representation of ak,i must
be zero. Hence, 1 bit is lost per layer due to the carryovers.
As a result, the achieved secure degrees of freedom turns out
to be smaller than those achieved with nested lattice codes.
Similar coding schemes can be designed for other values of√

ab. However, it is difficult to find a uniform description of
such codes that achieves a better performance than that of
nested lattice code. �

APPENDIX F
PROOF OF THEOREM 4

We prove Theorem 4 by showing that the loss in secrecy
rate due to the imperfectness of channel state information
can be bounded by a constant. To prove this, we consider
the channel in Fig. 8, where Z4 has the same distribution as
Z2. Z4, Z1, Z2 are independent. For this channel, we have the
following lemma:

Lemma 4: Any secrecy rate achievable in Fig. 8 is also
achievable in Fig. 5 with the same coding scheme.

Proof: Let n be the total number of channel uses. Let
D and D′ be two n × n diagonal matrices, whose diagonal
elements at the i th row and i th column are αi and α′

i respec-
tively. Define a diagonal matrix D̄ such that D̄ is obtained
from D by replacing the 0 elements on its diagonal line with
αmax. D̄′ is defined similarly from D′. Define Zn

i , i = 3, 4, 5
as an independent random variable with the same Gaussian
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distribution as Zn
2 . Zn

i , i = 2, 3, 4, 5 are independent. Then
the mutual information between W1 and the knowledge of the
eavesdropper in Fig. 5 can be upper bounded as follows:

0 ≤ I
(
W1; Y n

2 , D, D′) (164)

≤ I
(
W1; Xn

1 ± Xn
2 + Zn

2 + DXn
1 + D′ Xn

2 , D, D′) (165)

≤ I
(
W1; Xn

1 ± Xn
2 , 0.5Zn

2 + DXn
1 , 0.5Zn

4 + D′ Xn
2 , D, D′) .

(166)

We next divide the length-n vector 0.5Zn
2 + DXn

1 into two
sets of variables depending on whether the diagonal term αi

is zero: {0.5Z2,i +αi X1,i }i:αi �=0 and {0.5Z2,i}i:αi =0. Similarly,
we can rewrite 0.5Zn

4 + D′ Xn
2 as {0.5Z4,i + α′

i X2,i }i:α′
i �=0 and

{0.5Z4,i}i:α′
i =0. (166) then becomes

I (W1; Xn
1 ± Xn

2 , {0.5Z2,i + αi X1,i }i:αi �=0, {0.5Z2,i}i:αi =0,

{0.5Z4,i + α′
i X2,i }i:α′

i �=0, {0.5Z4,i}i:α′
i =0, D, D′) (167)

= I (W1; Xn
1 ± Xn

2 , {0.5Z2,i + αi X1,i }i:αi �=0,

{0.5Z4,i + α′
i X2,i }i:α′

i �=0, D, D′) (168)

≤ I
(
W1; Xn

1 ± Xn
2 , 0.5Zn

2 + D̄Xn
1 , 0.5Zn

4 + D̄′ Xn
2 , D̄, D̄′)

(169)

= I
(
W1; Xn

1 ± Xn
2 , Zn

2 + 2D̄Xn
1 , Zn

4 + 2D̄′ Xn
2 , D̄, D̄′)

(170)

= I (W1; Xn
1 ± Xn

2 ,
D̄

αmax
Zn

2 +
√

1 − D̄2

α2
max

Zn
3 + 2D̄Xn

1 ,

D̄′

αmax
Zn

4 +
√

1 − D̄′2
α2

max
Zn

5 + 2D̄′ Xn
2 , D̄, D̄′) (171)

≤ I (W1; Xn
1 ± Xn

2 ,
D̄

αmax
Zn

2 + 2D̄Xn
1 ,

D̄′

αmax
Zn

4 + 2D̄′ Xn
2 , D̄, D̄′) (172)

= I (W1; Xn
1 ± Xn

2 , Zn
2 + 2αmax Xn

1 , Zn
4 + 2αmax Xn

2 , D̄, D̄′).
(173)

Note that (173) is exactly the same as the mutual information
between W1 and the eavesdropper’s knowledge in Fig. 8.
Hence if

lim
n→∞

1

n
I (W1; Xn

1 ± Xn
2 , Zn

2 + 2αmax Xn
1 ,

Zn
4 + 2αmax Xn

2 , D̄, D̄′) = 0. (174)

Then we must have:

lim
n→∞

1

n
I
(

W1; Y N
2 , D, D′) = 0. (175)

This means that to obtain the secrecy rate for the model in
Fig. 5, we can as well compute the secrecy rate for the model
in Fig. 8.
We next compute the secrecy rate for Fig. 8. We use the same
layered nested lattice coding scheme in Theorem 2 except now
a different bin size must be chosen in the wiretap binning
scheme.

Recall that the notation AM represents Ai , i = 1, . . . , M .
We begin by applying the result (14) from [3]. It shows the

following secrecy rate Rs is achievable:

0 ≤ Rs ≤ [ lim
N→∞

1

N
(I (uN

1,M; Y N
1 )

−I (uN
1,M; X N

1 ± X N
2 , 2αmax X N

1 + Z N
2 , 2αmax X N

2 + Z N
4 ))]+.

(176)

Note that we drop D̄ and D̄′ since we assume they are
independent from the channel inputs and the additive channel
noise.

The first term in (176) is still given by (44) since the signal
received by D1 remains the same. The second term in (176)
can be upper bounded as follows:

1

N
I
(

uN
1,M; X N

1 ± X N
2 , Z N

2 + 2αmax X N
1 , 2αmax X N

2 + Z N
4

)

(177)

≤ 1

N
I
(

uN
1,M; X N

1 ± X N
2

)

+ 1

N
I

(
uN

1,M, X N
1 ± X N

2 ;
Z N

2 + 2αmax X N
1 , 2αmax X N

2 + Z N
4

)
(178)

≤ 1

N
I
(

uN
1,M; X N

1 ± X N
2

)

+ 1

N
I

(
uN

1,M, uN
2,M, X N

1 ± X N
2 ;

Z N
2 + 2αmax X N

1 , 2αmax X N
2 + Z N

4

)
(179)

= 1

N
I
(

uN
1,M; X N

1 ± X N
2

)

+ 1

N
I
(

uN
1,M, uN

2,M; Z N
2 + 2αmax X N

1 , 2αmax X N
2 + Z N

4

)

(180)

≤ 1

N
I
(

uN
1,M; X N

1 ± X N
2

)
+ 1

N
I
(

uN
1,M; Z N

2 + 2αmax X N
1

)

+ 1

N
I
(

uN
2,M; Z N

4 + 2αmax X N
2

)
. (181)

(180) is because {X N
1 ± X N

2 } − {uN
k,M, k = 1, 2} − {Z N

2 +
2αmax X N

1 , Z N
4 +2αmax X N

2 } is a Markov chain, since X N
1 ±X N

2
is a deterministic function of {uN

k,M, k = 1, 2}. The first term
in (181) is shown by (46)-(48) to be bounded by M . Hence
we only need to bound the second and the third term. The
second term is bounded by:

1

N
I
(

uN
1,M; Z N

2 + 2αmax X N
1

)
(182)

≤ 1

N
I
(

X N
1 ; Z N

2 + 2αmax X N
1

)
(183)

≤ C
(

4α2
max P1

)
(184)

where C(x) = 1
2 log2(1 + x). P1, the total transmission

power consumed by S1, is given by (30). The inequality (184)
follows since the mutual information in (183) is maximized
by a Gaussian input distribution. Similarly, the third term is
bounded by:

1

N
I
(

uN
2,M; Z N

4 + 2αmax X N
2

)
(185)

≤ C
(

4α2
max P2

)
. (186)

P2 is the total transmission power consumed by S2, which
equals P1 in our layered coding scheme.
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Applying (184),(186), (46)-(48), and (44) in (176), we find
the secrecy rate is given by

Rs = [(0.25 log2(α) − 1)M − 2C
(
4α2

max P1
)]+. (187)

Compared it to (33), the loss in secrecy rate is bounded
by 2C

(
4α2

max P1
)
, which is bounded by a constant per the

condition stated in Theorem 4. Hence the achieved secure
degrees of freedom remain the same as in Theorem 2.
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