Journal of Algebra and Related Topics

Vol. 2, No 2, (2014), pp 37-41

A NOTE ON PRIMARY-LIKE SUBMODULES OF MULTIPLICATION MODULES

H. FAZAELI MOGHIMI *, F. RASHEDI, AND M. SAMIEI

Abstract

Primary-like and weakly primary-like submodules are two new generalizations of primary ideals from rings to modules. In fact, the class of primary-like submodules of a module lie between primary submodules and weakly primary-like submodules properly. In this note, we show that these three classes coincide when their elements are submodules of a multiplication module and satisfy the primeful property.

1. Introduction

All rings are commutative with identity and all modules are unitary. For a submodule N of an R-module M, the colon ideal of M into N is $(N: M)=\{r \in R \mid r M \subseteq N\}=\operatorname{Ann}(M / N)$. A proper submodule P of M is said to be prime (resp. primary) if whenever $r m \in P$ for $r \in R$ and $m \in M$, then $r \in(P: M)$ (resp. $r \in \sqrt{(P: M)})$ or $m \in P[4,6]$. For a submodule N of M the intersection of all prime submodules of M containing N is called the radical of N and denoted by $\operatorname{rad} N$. If there is no prime submodule containing N, then we define $\operatorname{rad} N=M$ [6].

We say that a submodule N of an R-module M satisfies the primeful property if for each prime ideal p of R with $(N: M) \subseteq p$, there exists a prime submodule P containing N such that $(P: M)=p$.

[^0]In this case $(\operatorname{rad} N: M)=\sqrt{(N: M)}[3$, Proposition 5.3]. An R module M is called primeful if $M=0$ or the zero submodule of M satisfies the primeful property. For instance finitely generated modules, projective modules over domains and (finite and infinite dimensional) vector spaces are primeful [3].

An R-module M is a multiplication module if for every submodule N of M, there exists an ideal I of R such that $N=I M$. In this case, we can take $I=(N: M)[1]$. Every submodule of a multiplication module dose not necessarily satisfy the primeful property. For example, let K be a field and $S=K\left[x_{1}, x_{2}, x_{3}, \cdots\right]$ denote the polynomial ring in a countably infinite set of indeterminate $x_{1}, x_{2}, x_{3}, \cdots$. Let $A=$ $S x_{1}+S x_{2},+S x_{3},+\cdots$ and $B=S\left(x_{1}-x_{1}^{2}\right)+S\left(x_{2}-x_{2}^{2}\right)+S\left(x_{3}-x_{3}^{2}\right)+\cdots$. Then $M=A / B$ is a multiplication S-module which is not finitely generated [1, P. 770]. Thus by [3, Proposition 3.8] the zero submodule of M dose not satisfy the primeful property.

A proper submodule N of an R-module M is said to be primarylike if $r m \in N$ for $r \in R$ and $m \in M$ implies $r \in(N: M)$ or $m \in \operatorname{rad} N$. If N is a primary-like submodule of M which satisfies the primeful property, then $(N: M)$ is a primary ideal. By a p-primary-like submodule N of M, we mean that N is a primary-like submodule of M with $p=\sqrt{(N: M)}$. Primary-like submodules have been introduced and studied, by the first two authors [2].

We say that a proper submodule N of M is a weakly primary-like submodule, if for each submodule K of M and elements a, b of R, $a b K \subseteq N$, implies that $a K \subseteq N$, or $b K \subseteq \operatorname{rad} N$. If we consider R as an R-module, then primary submodules, primary-like submodules and weakly primary-like submodules are exactly primary ideals of R. Clearly, every primary-like submodule of a module is weakly primarylike. The converse is not true generally as the following example shows.

Example 1.1. Suppose $M=\mathbb{Z} \oplus \mathbb{Z}$ as a \mathbb{Z}-module. By [5, Corollary 2.5 and Theorem 3.5] M is not a multiplication module. Let $N=$ $(4,0) \mathbb{Z}+(0,2) \mathbb{Z}$. Then $(N: M)=4 \mathbb{Z}$ and $\operatorname{rad} N=(2,0) \mathbb{Z}+(0,2) \mathbb{Z}$. It is easy to see that N is primary and so a fortiori weakly primary-like submodule of M satisfying the primeful property which is not primarylike.

The following example shows that a weakly primary-like submodule need not to be primary.

Example 1.2. Assume $M=\mathbb{Z}\left(p^{\infty}\right)$ as a \mathbb{Z}-module. By [1, P. 764], M is not a multiplication module. Also by [5, P. 81], M has no prime
submodule. Thus every proper submodule of M is a primary-like submodule which dose not satisfy the primeful property. But every proper submodule of M is not a primary submodule since if $N=<1 / p^{t}+\mathbb{Z}>$ is a proper submodule of M, then $(N: M)=0$ and so $p^{i} \notin(N: M)$ for all i and $1 / p^{i+t}+\mathbb{Z} \notin N(i>0)$, but $p^{i}\left(1 / p^{i+t}+\mathbb{Z}\right) \in N$.

Motivated by the above examples, we prove in this paper that all three classes primary, primary-like, and weakly primary-like submodules of a multiplication module satisfying the primeful property coincide (Theorem 2.4).

2. Primary-Like submodules of multiplication modules

Lemma 2.1. Let N be a proper submodule of an R-module M. Then $\sqrt{(N: K)} \subseteq(\operatorname{rad} N: K)$ for every proper submodule K of M not contained in N.

Proof. Suppose that P is a prime submodule of M containing N. It is easy to see that $(P: K)$ is a prime ideal of R containing $(N: K)$. Hence $\sqrt{(N: K)} \subseteq(P: K)$. This implies that $\sqrt{(N: K)} K \subseteq(P: K) K \subseteq P$ and hence $\sqrt{(N: K)} K \subseteq \operatorname{rad} N$. Thus $\sqrt{(N: K)} \subseteq(\operatorname{rad} N: K)$.

Theorem 2.2. Let N be a proper submodule of an R-module M. If $(N: K)$ is a primary ideal of R for every proper submodule K of M not contained in N, then N is a weakly primary-like submodule of M. Furthermore, if N is a weakly primary-like submodule of M satisfying the primeful property, the $(N: M)$ is a primary ideal of R.

Proof. The proof is straightforward.
Let \mathfrak{m} be a maximal ideal of R and M be an R-module. The submodule $T_{\mathfrak{m}}(M)=\{x \in M \mid(1-m) x=0$ for some $m \in \mathfrak{m}\}$ of M is said to be \mathfrak{m}-torsion. The module M is called \mathfrak{m}-torsion, if $M=T_{\mathfrak{m}}(M)$. Also M is called \mathfrak{m}-cyclic if there exist $m \in \mathfrak{m}$ and $x \in M$ such that $(1-m) M \subseteq R x$. It is proved that M is a multiplication module over R if and only if M is either \mathfrak{m}-torsion or \mathfrak{m}-cyclic for each maximal ideal \mathfrak{m} of R [1, Theorem 1.2]. Using this fact we have the following result.

Lemma 2.3. Let q be a primary ideal of a ring R and M a faithful multiplication R-module. Let $a \in R, x \in M$ satisfy $a x \in q M$. Then $a \in q$ or $x \in \operatorname{rad}(q M)$.
Proof. Suppose $a \notin q$. Let $K=\{r \in R: r x \in \operatorname{rad}(q M)\}$. Suppose $K \neq R$. Then there exists a maximal ideal \mathfrak{m} of R such that $K \subseteq \mathfrak{m}$. Clearly $x \notin T_{\mathfrak{m}}(M)$. For, if $x \in T_{\mathfrak{m}}(M)$, then $(1-m) x=0$ for some $m \in \mathfrak{m}$. Therefore, $0=(1-m) x \in q M$ and so $1-m \in K \subseteq \mathfrak{m}$.
$1 \in \mathfrak{m}$, a contradiction. So M is \mathfrak{m}-cyclic; i.e., there exist $y \in M$, $m \in \mathfrak{m}$ such that $(1-m) M \subseteq R y$. In particular, $(1-m) x=s y$ and $(1-m) a x=p y$ for some $s \in R$ and $p \in q$. Thus $(a s-p) y=0$. Since M is faithful and $[(1-m) \operatorname{Ann}(y)] M=0$ we have $(1-m) \operatorname{Ann}(y)=0$. Hence $(1-m)$ as $=(1-m) p \in q$. But $q \subseteq K \subseteq \mathfrak{m}$ so that $s \in \sqrt{q}$ and $(1-m) x=s y \in \sqrt{q} M \subseteq \operatorname{rad}(q M)$. Thus $1-m \in K \subseteq \mathfrak{m}$. This is a contradiction. So $K=R$ and hence $x \in \operatorname{rad}(q M)$.

Lemma 2.3 can be restated thus: If M is a faithful multiplication and q is a primary ideal of R such that $M \neq q M$, then $q M$ is a primary-like submodule of M. Thus we have the following.

Theorem 2.4. Let N be a proper submodule of a multiplication R module M. If N satisfies the primeful property, then the following statements are equivalent.
(1) N is a primary-like submodule of M;
(2) N is a weakly primary-like submodule of M;
(3) $(N: M)$ is a primary ideal of R;
(4) $N=q M$ for some primary ideal q of R with $\operatorname{Ann}(M) \subseteq q$;
(5) N is primary.

Proof. $(1) \Rightarrow(2)$ is clear and $(2) \Rightarrow(3)$ is true by Theorem 2.2 $(3) \Rightarrow(4)$ and $(5) \Rightarrow(3)$ are clear since M is a multiplication R-module. $(4) \Rightarrow(1)$ is evident.
$(4) \Rightarrow(5)$ Without loss of generality M is a faithful R-module. If $a x \in$ $q M$ for some $a \in R, x \in M$ and $a \notin \sqrt{(q M: M)}$, then $a \notin \sqrt{q}$. Let $K=\{r \in R: r x \in q M\}$. Suppose $K \neq R$. Then there exists a maximal \mathfrak{m} of R such that $K \subseteq \mathfrak{m}$. Clearly $x \notin T_{\mathfrak{m}}(M)$. By [1, Theorem 1.2], M is \mathfrak{m}-cyclic, that is there exist $y \in M, m \in \mathfrak{m}$ such that $(1-m) M \subseteq R y$. In particular, $(1-m) x=s y$ and $(1-m) a x=a s y=p y$ for some $s \in R$ and $p \in q$. Thus $(a s-p) y=0$. Since $(1-m) M \subseteq R y$, $(1-m)(a s-p) M \subseteq R(a s-p) y=0$ and so $(1-m)(a s-p) M=0$. Now, $[(1-m)(a s-p)] M=0$ implies $(1-m)(a s-p))=0$, because M is faithful, and hence $(1-m)$ as $=(1-m) p \in q$ so that $s \in q$ and $(1-m) x=s y \in q M$. Thus $1-m \in K \subseteq \mathfrak{m}$, a contradiction. It follows that $K=R$ and $x \in q M$, as required.

Corollary 2.5. Let M be a multiplication R-module. If N is a primarylike submodule of M satisfying the primeful property, then $\operatorname{rad} N$ is a prime submodule of M.

Proof. By Theorem 2.4, $N=q M$ for some primary ideal q containing $\operatorname{Ann}(M)$. Since M is a multiplication module, by [1, Theorem 2.12] $\operatorname{rad}(q M)=\sqrt{q} M$ and so by [1, Corollary 2.11] $\operatorname{rad} N$ is a prime submodule of M.

Two Examples 1.1 and 1.2 show that both conditions M is multiplication and N satisfies the primeful property in Theorem 2.4 are required. In fact, M in Example 1.1 is not a multiplication module by [5, Corollary 2.5 and Theorem 3.5].

References

1. Z. A. EL-Bast, P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), 755-779.
2. H. Fazaeli Moghimi, F. Rashedi, Primary-like submodules satisfying the primeful property, to appear in Transaction on algebra and its application.
3. C. P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33 (2007), 127-143.
4. R. L. McCasland, M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
5. R. L. McCasland, M. E. Moore, P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25 (1997), 79-103.
6. M. E. Moore, S. J. Smith, Prime and radical submodules of modules over commutative rings, Comm. Algebra, 30 (2002), 5073-5064.

Hosein Fazaeli Moghimi

Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.
Email: hfazaeli@birjand.ac.ir

Fatemeh Rashedi

Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.
Email: fatemehrashedi@birjand.ac.ir
Mahdi Samiei
Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.
Email: mahdisamiei@birjand.ac.ir

[^0]: MSC(2010): Primary: 13C13; Secondary: 13C99
 Keywords: Primary-like submodule, weakly primary-like submodule, primeful property, multiplication module.
 Received: 12 August 2014, Accepted: 6 November 2014.
 *Corresponding author.

