@MISC{Ibarra01fullydynamic, author = {Louis Ibarra}, title = {Fully dynamic algorithms for chordal graphs}, year = {2001} }

Share

OpenURL

Abstract

We present the first dynamic algorithm that maintains a clique tree representation of a chordal graph and supports the following operations: (1) query whether deleting or inserting an arbitrary edge preserves chordality, (2) delete or insert an arbitrary edge, provided it preserves chordality. We give two implementations. In the first, each operation runs in O(n) time, where n is the number of vertices. In the second, an insertion query runs in O(logĀ² n) time, an insertion in O(n) time, a deletion query in O(n) time, and a deletion in O(n log n) time. We also present a data structure that allows a deletion query to run in O ( p m) time in either implementation, where m is the current number of edges. Updating this data structure after a deletion or insertion requires O(m) time. We also present a very simple dynamic algorithm that supports each of the following operations in O(1) time on a general graph: (1) query whether the graph is split, (2) delete or insert an arbitrary edge.