## Kalman filter and joint tracking and classification based on belief functions

Venue: | in the TBM framework. Information Fusion, 2005. In |

Citations: | 4 - 0 self |

### BibTeX

@INPROCEEDINGS{Ristic_kalmanfilter,

author = {Branko Ristic},

title = {Kalman filter and joint tracking and classification based on belief functions},

booktitle = {in the TBM framework. Information Fusion, 2005. In},

year = {},

publisher = {Press}

}

### OpenURL

### Abstract

The paper presents an approach to joint tracking and classification based on belief func-tions as understood in the transferable belief model (TBM). The TBM model is identical to the classical model except all probability functions are replaced by belief functions, which are more flexible for representing uncertainty. It is felt that the tracking phase is well han-dled by the classical Kalman filter but that the classification phase deserves amelioration. For the tracking phase, we derive a minimal set of assumptions needed in the TBM ap-proach in order to recover the classical relations. For the classification phase, we distinguish between the observed target behaviors and the underlying target classes which are usually not in one-to-one correspondence. We feel the results obtained with the TBM approach are more reasonable than those obtained with the corresponding Bayesian classifiers.