@MISC{Bauer07implementingreal, author = {Andrej Bauer and Iztok Kavkler}, title = {Implementing real numbers with RZ}, year = {2007} }

Share

OpenURL

Abstract

RZ is a tool which translates axiomatizations of mathematical structures to program specifications using the realizability interpretation of logic. This helps programmers correctly implement data structures for computable mathematics. RZ does not prescribe a particular method of implementation, but allows programmers to write efficient code by hand, or to extract trusted code from formal proofs, if they so desire. We used this methodology to axiomatize real numbers and implemented the specification computed by RZ. The axiomatization is the standard domaintheoretic construction of reals as the maximal elements of the interval domain, while the implementation closely follows current state-of-the-art implementations of exact real arithmetic. Our results shows not only that the theory and practice of computable mathematics can coexist, but also that they work together harmoniously.