## Kernel Techniques: From Machine Learning to Meshless Methods (2006)

### Cached

### Download Links

by
Robert Schaback
,
Holger Wendland

Citations: | 28 - 7 self |

### BibTeX

@MISC{Schaback06kerneltechniques:,

author = {Robert Schaback and Holger Wendland},

title = { Kernel Techniques: From Machine Learning to Meshless Methods},

year = {2006}

}

### Years of Citing Articles

### OpenURL

### Abstract

Kernels are valuable tools in various fields of Numerical Analysis, including approximation, interpolation, meshless methods for solving partial differential equations, neural networks, and Machine Learning. This contribution explains why and how kernels are applied in these disciplines. It uncovers the links between them, as far as they are related to kernel techniques. It addresses non-expert readers and focuses on practical guidelines for using kernels in applications.