## MAP estimation via agreement on trees: Message-passing and linear programming (2002)

### Cached

### Download Links

- [www.ai.mit.edu]
- [ssg.mit.edu]
- [www.eecs.berkeley.edu]
- [www.stanford.edu]
- [ssg.mit.edu]
- DBLP

### Other Repositories/Bibliography

Citations: | 132 - 8 self |

### BibTeX

@MISC{Wainwright02mapestimation,

author = {M. J. Wainwright and et al.},

title = {MAP estimation via agreement on trees: Message-passing and linear programming},

year = {2002}

}

### OpenURL

### Abstract

We develop and analyze methods for computing provably optimal maximum a posteriori (MAP) configurations for a subclass of Markov random fields defined on graphs with cycles. By decomposing the original distribution into a convex combination of tree-structured distributions, we obtain an upper bound on the optimal value of the original problem (i.e., the log probability of the MAP assignment) in terms of the combined optimal values of the tree problems. We prove that this upper bound is tight if and only if all the tree distributions share an optimal configuration in common. An important implication is that any such shared configuration must also be a MAP configuration for the original distribution. Next we develop two approaches to attempting to obtain tight upper bounds: (a) a tree-relaxed linear program (LP), which is derived from the Lagrangian dual of the upper bounds; and (b) a tree-reweighted max-product messagepassing algorithm that is related to but distinct from the max-product algorithm. In this way, we establish a connection between a certain LP relaxation of the modefinding problem, and a reweighted form of the max-product (min-sum) message-passing algorithm.