## Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems (2004)

Venue: | Computational Optimization and Applications |

Citations: | 29 - 1 self |

### BibTeX

@ARTICLE{Birgin04numericalcomparison,

author = {E. G. Birgin and R. A. Castillo and J. M. Martínez},

title = {Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems},

journal = {Computational Optimization and Applications},

year = {2004},

volume = {31},

pages = {31--56}

}

### OpenURL

### Abstract

Augmented Lagrangian algorithms are very popular tools for solving nonlinear programming problems. At each outer iteration of these methods a simpler optimization problem is solved, for which ecient algorithms can be used, especially when the problems are large. The most famous Augmented Lagrangian algorithm for minimization with inequality constraints is known as Powell-Hestenes-Rockafellar (PHR) method. The main drawback of PHR is that the objective function of the subproblems is not twice continuously dierentiable. This is the main motivation for the introduction of many alternative Augmented Lagrangian methods.