## Nearly Optimal Algorithms For Canonical Matrix Forms (1993)

Citations: | 54 - 11 self |

### BibTeX

@MISC{Giesbrecht93nearlyoptimal,

author = {Mark Giesbrecht},

title = {Nearly Optimal Algorithms For Canonical Matrix Forms},

year = {1993}

}

### Years of Citing Articles

### OpenURL

### Abstract

A Las Vegas type probabilistic algorithm is presented for finding the Frobenius canonical form of an n x n matrix T over any field K. The algorithm requires O~(MM(n)) = MM(n) (log n) ^ O(1) operations in K, where O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nearly matches the lower bound of \Omega(MM(n)) operations in K for this problem, and improves on the O(n^4) operations in K required by the previously best known algorithms. We also demonstrate a fast parallel implementation of our algorithm for the Frobenius form, which is processor-efficient on a PRAM. As an application we give an algorithm to evaluate a polynomial g(x) in K[x] at T which requires only O~(MM(n)) operations in K when deg g < n^2. Other applications include sequential and parallel algorithms for computing the minimal and characteristic polynomials of a matrix, the rational Jordan form of a matrix, for testing whether two matrices are similar, and for matrix powering, which are substantially faster than those previously known.