• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

THE SHERMAN-MORRISON FORMULA AND EIGENVALUES OF A SPECIAL BORDERED MATRIX

Cached

  • Download as a PDF

Download Links

  • [www.mat.ub.edu]
  • [www.maths.tcd.ie]
  • [siba-sinmemis.unile.it]
  • [www.emis.de]
  • [emis.maths.tcd.ie]
  • [ftp.gwdg.de]
  • [pc2.iam.fmph.uniba.sk]
  • [www.maths.soton.ac.uk]
  • [www.math.ethz.ch]
  • [www.cirm.univ-mrs.fr]
  • [www.univie.ac.at]
  • [www.iam.fmph.uniba.sk]
  • [www.emis.ams.org]
  • [emis.library.cornell.edu]
  • [emis.maths.adelaide.edu.au]
  • [www.mat.ub.es]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by G. Trenkler , D. Trenkler
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Trenkler_thesherman-morrison,
    author = {G. Trenkler and D. Trenkler},
    title = {THE SHERMAN-MORRISON FORMULA AND EIGENVALUES OF A SPECIAL BORDERED MATRIX},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

Abstract. The article of Ding and Pye [3] is reconsidered and extended. In con-trast to their assertion, we find that the Sherman-Morrison formula is well suited to prove certain statements about a class of bordered matrices. 1.

Keyphrases

sherman-morrison formula    bordered matrix    certain statement   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University