## Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures (1999)

Citations: | 61 - 14 self |

### BibTeX

@MISC{Eckmann99non-equilibriumstatistical,

author = {J.-P. Eckmann and C.-A. Pillet and L. Rey-bellet},

title = {Non-Equilibrium Statistical Mechanics of Anharmonic Chains Coupled to Two Heat Baths at Different Temperatures},

year = {1999}

}

### Years of Citing Articles

### OpenURL

### Abstract

. We study the statistical mechanics of a finite-dimensional non-linear Hamiltonian system (a chain of anharmonic oscillators) coupled to two heat baths (described by wave equations). Assuming that the initial conditions of the heat baths are distributed according to the Gibbs measures at two different temperatures we study the dynamics of the oscillators. Under suitable assumptions on the potential and on the coupling between the chain and the heat baths, we prove the existence of an invariant measure for any temperature difference, i.e., we prove the existence of steady states. Furthermore, if the temperature difference is sufficiently small, we prove that the invariant measure is unique and mixing. In particular, we develop new techniques for proving the existence of invariant measures for random processes on a non-compact phase space. These techniques are based on an extension of the commutator method of H ormander used in the study of hypoelliptic differential operators. 1. Intr...