## Algebra of Flownomials; Part 1: Binary Flownomials; Basic Theory

### Cached

### Download Links

- [www4.informatik.tu-muenchen.de]
- [www4.in.tum.de]
- [wwwbroy.informatik.tu-muenchen.de]
- [www4.informatik.tu-muenchen.de]
- DBLP

### Other Repositories/Bibliography

Citations: | 15 - 0 self |

### BibTeX

@MISC{Stefanescu_algebraof,

author = {Gheorghe Stefanescu},

title = {Algebra of Flownomials; Part 1: Binary Flownomials; Basic Theory},

year = {}

}

### OpenURL

### Abstract

' morphism for connecting flowgraphs are used in [CaU82] and in all of our subsequent papers on flowchart schemes and flownomials, see [Ste87a, Ste87b, CaS88a, CaS90a, CaS92]. This chapter folows Chapter B, sec. 3--6 of [Ste91]. The main result is based on a series of papers dealing with the algebraization of flowchart schemes, including [CaU82, BlEs85, Ste86/90, Bar87a, CaS88a, CaS90b]. With different sets of operators various algebras for flowgraphs appear in [Mil79, Parr87, CaS90b, CaS88b]. In the classical algebraic calculus for regular languages it is often the case that certain abstract semirings are used instead of the Boolean f0; 1g semiring, e.g. by using formal series with such coefficients. 5 This property is similar to the universal property of the polynomials over a ring. Chapter 6 Graph isomorphism with various constants In this chapter we extend the axiomatistion for flowgraphs modulo isomorphism to the case where more constants for generating relations are present i...