@MISC{He99modelingand, author = {Lei He}, title = {Modeling and Optimization of VLSI Interconnects}, year = {1999} }

Share

OpenURL

Abstract

As very large scale integrated (VLSI) circuits move into the era of deepsubmicron (DSM) technology and gigahertz frequency, the system performance has increasingly become dominated by the interconnect delay. This dissertation presents five related research topics on interconnect layout optimization, and interconnect extraction and modeling: the multi-source wire sizing (MSWS) problem, the simultaneous transistor and interconnect sizing (STIS) problem, the global interconnect sizing and spacing (GISS) problem, the interconnect capacitance extraction problem, and the interconnect inductance extraction problems. Given a routing tree with multiple sources, the MSWS problem determines the optimal widths of the wire segments such that the delay is minimized. We reveal several interesting properties for the optimal MSWS solution, of which the most important is the bundled refinement property. Based on this property, we propose a polynomial time algorithm, which uses iterative bundled refinement operations to compute lower and upper bounds of an optimal solution. Since the algorithm often achieves identical lower and upper bounds in experiments, the optimal solution is obtained simply by the bound computation. Furthermore, this algorithm can be used for single-source wire sizing problem and runs 100x xxi faster than previous methods. It has replaced previous single-source wire sizing methods in practice.