## New Lower Bounds for Hopcroft's Problem (1996)

### Cached

### Download Links

Citations: | 33 - 6 self |

### BibTeX

@MISC{Erickson96newlower,

author = {Jeff Erickson},

title = {New Lower Bounds for Hopcroft's Problem},

year = {1996}

}

### Years of Citing Articles

### OpenURL

### Abstract

We establish new lower bounds on the complexity of the following basic geometric problem, attributed to John Hopcroft: Given a set of n points and m hyperplanes in R d , is any point contained in any hyperplane? We define a general class of partitioning algorithms, and show that in the worst case, for all m and n, any such algorithm requires time #(n log m+n 2/3 m 2/3 +m log n) in two dimensions, or #(n log m+n 5/6 m 1/2 +n 1/2 m 5/6 + m log n) in three or more dimensions. We obtain slightly higher bounds for the counting version of Hopcroft's problem in four or more dimensions. Our planar lower bound is within a factor of 2 O(log # (n+m)) of the best known upper bound, due to Matousek. Previously, the best known lower bound, in any dimension, was #(n log m + m log n). We develop our lower bounds in two stages. First we define a combinatorial representation of the relative order type of a set of points and hyperplanes, called a monochromatic cover, and derive low...