## A General Framework for Adaptive Processing of Data Structures (1998)

### Cached

### Download Links

Venue: | IEEE TRANSACTIONS ON NEURAL NETWORKS |

Citations: | 118 - 47 self |

### BibTeX

@ARTICLE{Frasconi98ageneral,

author = {Paolo Frasconi and Marco Gori and Alessandro Sperduti},

title = {A General Framework for Adaptive Processing of Data Structures},

journal = {IEEE TRANSACTIONS ON NEURAL NETWORKS},

year = {1998},

volume = {9},

pages = {768--786}

}

### Years of Citing Articles

### OpenURL

### Abstract

A structured organization of information is typically required by symbolic processing. On the other hand, most connectionist models assume that data are organized according to relatively poor structures, like arrays or sequences. The framework described in this paper is an attempt to unify adaptive models like artificial neural nets and belief nets for the problem of processing structured information. In particular, relations between data variables are expressed by directed acyclic graphs, where both numerical and categorical values coexist. The general framework proposed in this paper can be regarded as an extension of both recurrent neural networks and hidden Markov models to the case of acyclic graphs. In particular we study the supervised learning problem as the problem of learning transductions from an input structured space to an output structured space, where transductions are assumed to admit a recursive hidden statespace representation. We introduce a graphical formalism for r...