@MISC{Breiman00randomizingoutputs, author = {Leo Breiman}, title = {Randomizing Outputs To Increase Prediction Accuracy}, year = {2000} }

Share

OpenURL

Abstract

Introduction In recent research in combining predictors, it has been recognized that the critical thing to success in combining low-bias predictors such as trees and neural nets has been through methods that reduce the variability in the predictor due to training set variability. Assume that the training set consists of N independent draws from the same underlying distribution. Conceptually, training sets of size N can be drawn repeatedly and the same algorithm used to construct a predictor on each training set. These predictors will vary, and the extent of the variability is a dominant factor in the generalization prediction error. 2 Given a training set {(y n ,x n ),n=1,...N} where the y's are either class labels or numerical values, the most common way of reducing variability is by perturbing the training set to produce alternative training sets, growing a predictor on