## QUANTUM MECHANICS (2003)

### BibTeX

@MISC{Kitada03quantummechanics,

author = {Hitoshi Kitada},

title = {QUANTUM MECHANICS },

year = {2003}

}

### OpenURL

### Abstract

I consider in this book a formulation of Quantum Mechanics, which is often abbreviated as QM. Usually QM is formulated based on the notion of time and space, both of which are thought a priori given quantities or notions. However, when we try to define the notion of velocity or momentum, we encounter a difficulty as we will see in chapter 1. The problem is that if the notion of time is given a priori, the velocity is definitely determined when given a position, which contradicts the uncertainty principle of Heisenberg. We then set the basis of QM on the notion of position and momentum operators as in chapter 2. Time of a local system then is defined approximately as a ratio |x|/|v | between the space coordinate x and the velocity v, where |x|, etc. denotes the absolute value or length of a vector x. In this formulation of QM, we can keep the uncertainty principle, and time is a quantity that does not have precise values unlike the usually supposed notion of time has. The feature of local time is that it is a time proper to each local system, which is defined as a finite set of quantum mechanical particles. We now have an infinite number of local times that are unique and proper to each local system.