@MISC{Carbone99thecost, author = {A. Carbone}, title = {The Cost of a Cycle is a Square}, year = {1999} }

Bookmark

OpenURL

Abstract

The logical flow graphs of sequent calculus proofs might contain oriented cycles. For the predicate calculus the elimination of cycles might be non-elementary and this was shown in [Car96]. For the propositional calculus, we prove that if a proof of k lines contains n cycles then there exists an acyclic proof with O(k n+1 ) lines. In particular, there is a quadratic time algorithm which eliminates a single cycle from a proof. These results are motivated by the search for general methods on proving lower bounds on proof size and by the design of more efficient heuristic algorithms for proof search.