## Recursive Monte Carlo filters: Algorithms and theoretical analysis (2003)

Citations: | 40 - 0 self |

### BibTeX

@TECHREPORT{Künsch03recursivemonte,

author = {R. Künsch and Eth Zürich and Recursive Monte Carlo Filters and Are A},

title = {Recursive Monte Carlo filters: Algorithms and theoretical analysis},

institution = {},

year = {2003}

}

### Years of Citing Articles

### OpenURL

### Abstract

powerful tool to perform computations in general state space models. We discuss and compare the accept–reject version with the more common sampling importance resampling version of the algorithm. In particular, we show how auxiliary variable methods and stratification can be used in the accept–reject version, and we compare different resampling techniques. In a second part, we show laws of large numbers and a central limit theorem for these Monte Carlo filters by simple induction arguments that need only weak conditions. We also show that, under stronger conditions, the required sample size is independent of the length of the observed series. 1. State space and hidden Markov models. A general state space or hidden Markov model consists of an unobserved state sequence (Xt) and an observation sequence (Yt) with the following properties: State evolution: X0,X1,X2,... is a Markov chain with X0 ∼ a0(x)dµ(x) and Xt|Xt−1 = xt−1 ∼ at(xt−1,x)dµ(x). Generation of observations: Conditionally on (Xt), the Yt’s are independent and Yt depends on Xt only with Yt|Xt = xt ∼ bt(xt,y)dν(y). These models occur in a variety of applications. Linear state space models are equivalent to ARMA models (see, e.g., [16]) and have become popular Received January 2003; revised August 2004. AMS 2000 subject classifications. Primary 62M09; secondary 60G35, 60J22, 65C05. Key words and phrases. State space models, hidden Markov models, filtering and smoothing, particle filters, auxiliary variables, sampling importance resampling, central limit theorem. This is an electronic reprint of the original article published by the