@MISC{Kitada03ismathematics, author = {Hitoshi Kitada}, title = {Is mathematics consistent?}, year = {2003} }

Share

OpenURL

Abstract

Abstract: A question is proposed whether or not set theory is consistent. We consider a formal set theory S, where we can develop a number theory. As no generality is lost, in the following we consider a number theory that can be regarded as a subsystem of S, and will call it S (0). Definition 1. 1) We assume that a Gödel numbering of the system S (0) is given, and denote a formula with the Gödel number n by An. 2) A (0) (a, b) is a predicate meaning that “a is the Gödel number of a formula A with just one free variable (which we denote by A(a)), and b is the Gödel number of a proof of the formula A(a) in S (0), ” and B (0) (a, c) is a predicate meaning that “a is the Gödel number of a formula A(a), and c is the Gödel number of a proof of the formula ¬A(a) in S (0). ” Here a denotes the formal natural number corresponding to an intuitive natural number a of the meta level. Definition 2. Let P(x1, · · ·.xn) be an intuitive-theoretic predicate. We say that P(x1, · · ·,xn) is numeralwise expressible in the formal system S (0), if there is a formula P(x1, · · ·,xn) with no free variables other than the distinct variables x1, · · ·,xn such that, for each particular n-tuple of natural numbers x1, · · ·,xn, the following holds: i) if P(x1, · · ·,xn) is true, then ⊢ P(x1, · · ·,xn). and ii) if P(x1, · · ·,xn) is false, then ⊢ ¬P(x1, · · ·,xn).