• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories

Cached

  • Download as a PDF

Download Links

  • [hal.inria.fr]
  • [hal-ens.archives-ouvertes.fr]
  • [hal.inria.fr]
  • [hal.inria.fr]
  • [www-cvr.ai.uiuc.edu]
  • [www.di.ens.fr]
  • [people.csail.mit.edu]
  • [lear.inrialpes.fr]
  • [www.cs.unc.edu]
  • [www.cs.unc.edu]
  • [www.vision.caltech.edu]
  • [robotics.ai.uiuc.edu]
  • [www.micc.unifi.it]
  • [www.cs.illinois.edu]
  • [cvcl.mit.edu]
  • [web.eecs.umich.edu]
  • [web.engr.illinois.edu]
  • [web.engr.illinois.edu]
  • [www.csd.uwo.ca]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Cordelia Schmid
Venue:In CVPR
Citations:1920 - 46 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Schmid_beyondbags,
    author = {Cordelia Schmid},
    title = {Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories},
    booktitle = {In CVPR},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper presents a method for recognizing scene categories based on approximate global geometric correspondence. This technique works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting “spatial pyramid ” is a simple and computationally efficient extension of an orderless bag-of-features image representation, and it shows significantly improved performance on challenging scene categorization tasks. Specifically, our proposed method exceeds the state of the art on the Caltech-101 database and achieves high accuracy on a large database of fifteen natural scene categories. The spatial pyramid framework also offers insights into the success of several recently proposed image descriptions, including Torralba’s “gist ” and Lowe’s SIFT descriptors. 1.

Keyphrases

spatial pyramid    beyond bag    natural scene category    achieves high accuracy    sift descriptor    caltech-101 database    large database    torralba gist    scene category    spatial pyramid framework    efficient extension    orderless bag-of-features image representation    local feature    image description    fine sub-regions    approximate global geometric correspondence    fifteen natural scene category    scene categorization task   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University