• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Inverting Grice’s Maxims to Learn Rules from Natural Language Extractions

Cached

  • Download as a PDF

Download Links

  • [www.cs.orst.edu]
  • [web.engr.oregonstate.edu]
  • [books.nips.cc]
  • [web.engr.oregonstate.edu]
  • [web.engr.oregonstate.edu]
  • [people.oregonstate.edu]
  • [web.engr.oregonstate.edu]
  • [people.oregonstate.edu]
  • [machinelearning.wustl.edu]
  • [web.engr.oregonstate.edu]
  • [web.engr.orst.edu]
  • [web.engr.oregonstate.edu]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Mohammad Shahed Sorower , Thomas G. Dietterich , Walker Orr , Prasad Tadepalli , Xiaoli Fern
Citations:8 - 0 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Sorower_invertinggrice’s,
    author = {Mohammad Shahed Sorower and Thomas G. Dietterich and Walker Orr and Prasad Tadepalli and Xiaoli Fern},
    title = {Inverting Grice’s Maxims to Learn Rules from Natural Language Extractions},
    year = {}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We consider the problem of learning rules from natural language text sources. These sources, such as news articles and web texts, are created by a writer to communicate information to a reader, where the writer and reader share substantial domain knowledge. Consequently, the texts tend to be concise and mention the minimum information necessary for the reader to draw the correct conclusions. We study the problem of learning domain knowledge from such concise texts, which is an instance of the general problem of learning in the presence of missing data. However, unlike standard approaches to missing data, in this setting we know that facts are more likely to be missing from the text in cases where the reader can infer them from the facts that are mentioned combined with the domain knowledge. Hence, we can explicitly model this “missingness ” process and invert it via probabilistic inference to learn the underlying domain knowledge. This paper introduces a mention model that models the probability of facts being mentioned in the text based on what other facts have already been mentioned and domain knowledge in the form of Horn clause rules. Learning must simultaneously search the space of rules and learn the parameters of the mention model. We accomplish this via an application of Expectation Maximization within a Markov Logic framework. An experimental evaluation on synthetic and natural text data shows that the method can learn accurate rules and apply them to new texts to make correct inferences. Experiments also show that the method out-performs the standard EM approach that assumes mentions are missing at random. 1

Keyphrases

natural language extraction    grice maxim    domain knowledge    mention model    experimental evaluation    probabilistic inference    markov logic framework    concise text    standard em approach    general problem    reader share substantial domain knowledge    standard approach    web text    correct inference    missingness process    horn clause rule    correct conclusion    news article    natural text data show    expectation maximization    accurate rule    new text    minimum information    natural language text source   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University