## Uniform random sampling of planar graphs in linear time (2007)

### Cached

### Download Links

Citations: | 9 - 2 self |

### BibTeX

@MISC{Fusy07uniformrandom,

author = {Éric Fusy},

title = {Uniform random sampling of planar graphs in linear time},

year = {2007}

}

### OpenURL

### Abstract

Abstract. This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the generating functions counting planar graphs, which was recently obtained by Giménez and Noy. This gives rise to an extremely efficient algorithm for the random generation of planar graphs. There is a preprocessing step of some fixed small cost; and the expected time complexity of generation is quadratic for exact-size uniform sampling and linear for approximate-size sampling. This greatly improves on the best previously known time complexity for exact-size uniform sampling of planar graphs with n vertices, which was a little over O(n 7). This is the extended and revised journal version of a conference paper with the title “Quadratic exact-size and linear approximate-size random generation of planar graphs”, which appeared in the Proceedings of the International Conference on Analysis of Algorithms (AofA’05), 6-10 June 2005, Barcelona. 1.