## A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures (1997)

Venue: | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |

Citations: | 68 - 26 self |

### BibTeX

@ARTICLE{Phillips97aprecorrected-fft,

author = {Joel R. Phillips and Jacob K. White and Associate Member},

title = {A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures},

journal = {IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems},

year = {1997},

volume = {16},

pages = {1059--1072}

}

### OpenURL

### Abstract

In this paper we present a new algorithm for accelerating the potential calculation which occurs in the inner loop of iterative algorithms for solving electromagnetic boundary integral equations. Such integral equations arise, for example, in the extraction of coupling capacitances in three-dimensional (3-D) geometries. We present extensive experimental comparisons with the capacitance extraction code FASTCAP [1] and demonstrate that, for a wide variety of geometries commonly encountered in integrated circuit packaging, on-chip interconnect and micro-electro-mechanical systems, the new "precorrectedFFT " algorithm is superior to the fast multipole algorithm used in FASTCAP in terms of execution time and memory use. At engineering accuracies, in terms of a speed-memory product, the new algorithm can be superior to the fast multipole based schemes by more than an order of magnitude.