@TECHREPORT{Lindley08thearrow, author = {Sam Lindley and Philip Wadler and Jeremy Yallop}, title = {The arrow calculus}, institution = {}, year = {2008} }

Bookmark

OpenURL

Abstract

Abstract. We introduce the arrow calculus, a metalanguage for manipulating Hughes’s arrows with close relations both to Moggi’s metalanguage for monads and to Paterson’s arrow notation. Arrows are classically defined by extending lambda calculus with three constructs satisfying nine (somewhat idiosyncratic) laws. In contrast, the arrow calculus adds four constructs satisfying five laws. Two of the constructs are arrow abstraction and application (satisfying beta and eta laws) and two correspond to unit and bind for monads (satisfying left unit, right unit, and associativity laws). The five laws were previously known to be sound; we show that they are also complete, and hence that the five laws may replace the nine. We give a translation from classic arrows into the arrow calculus to complement Paterson’s desugaring and show that the two translations form an equational correspondence in the sense of Sabry and Felleisen. We are also the first to publish formal type rules (which are unusual in that they require two contexts), which greatly aided our understanding of arrows. The first fruit of our new calculus is to reveal some redundancies in the classic formulation: the nine classic arrow laws can be reduced to eight, and the three additional classic arrow laws for arrows with apply can be reduced to two. The calculus has also been used to clarify the relationship between idioms, arrows and monads and as the inspiration for a categorical semantics of arrows. 1