## On initial segment complexity and degrees of randomness

Venue: | Trans. Amer. Math. Soc |

Citations: | 32 - 6 self |

### BibTeX

@ARTICLE{Miller_oninitial,

author = {Joseph S. Miller and Liang Yu},

title = {On initial segment complexity and degrees of randomness},

journal = {Trans. Amer. Math. Soc},

year = {}

}

### Years of Citing Articles

### OpenURL

### Abstract

Abstract. One approach to understanding the fine structure of initial segment complexity was introduced by Downey, Hirschfeldt and LaForte. They define X ≤K Y to mean that (∀n) K(X ↾ n) ≤ K(Y ↾ n) +O(1). The equivalence classes under this relation are the K-degrees. We prove that if X ⊕ Y is 1-random, then X and Y have no upper bound in the K-degrees (hence, no join). We also prove that n-randomness is closed upward in the K-degrees. Our main tool is another structure intended to measure the degree of randomness of real numbers: the vL-degrees. Unlike the K-degrees, many basic properties of the vL-degrees are easy to prove. We show that X ≤K Y implies X ≤vL Y, so some results can be transferred. The reverse implication is proved to fail. The same analysis is also done for ≤C, the analogue of ≤K for plain Kolmogorov complexity. Two other interesting results are included. First, we prove that for any Z ∈ 2ω, a 1-random real computable from a 1-Z-random real is automatically 1-Z-random. Second, we give a plain Kolmogorov complexity characterization of 1-randomness. This characterization is related to our proof that X ≤C Y implies X ≤vL Y. 1.