• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

The Infinite Hidden Markov Model (2002)

Cached

  • Download as a PDF

Download Links

  • [www.gatsby.ucl.ac.uk]
  • [publications.ai.mit.edu]
  • [18.7.29.232]
  • [www.gatsby.ucl.ac.uk]
  • [ftp.cs.toronto.edu]
  • [publications.ai.mit.edu]
  • [psyche.mit.edu]
  • [www.cs.berkeley.edu]
  • [ftp.cs.toronto.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Matthew J. Beal , Zoubin Ghahramani , Carl E. Rasmussen
Venue:Machine Learning
Citations:637 - 41 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Beal02theinfinite,
    author = {Matthew J. Beal and Zoubin Ghahramani and Carl E. Rasmussen},
    title = {The Infinite Hidden Markov Model},
    booktitle = {Machine Learning},
    year = {2002},
    pages = {29--245},
    publisher = {MIT Press}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We show that it is possible to extend hidden Markov models to have a countably infinite number of hidden states. By using the theory of Dirichlet processes we can implicitly integrate out the infinitely many transition parameters, leaving only three hyperparameters which can be learned from data. These three hyperparameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics. The three hyperparameters control the time scale of the dynamics, the sparsity of the underlying state-transition matrix, and the expected number of distinct hidden states in a finite sequence. In this framework it is also natural to allow the alphabet of emitted symbols to be infinite---consider, for example, symbols being possible words appearing in English text.

Keyphrases

infinite hidden markov model    hierarchical dirichlet process capable    transition dynamic    emitted symbol    finite sequence    time scale    infinite consider    distinct hidden state    state-transition matrix    english text    many transition parameter    hidden markov model    hidden state    expected number    possible word    infinite number    rich set   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University