## Mind Change Optimal Learning: . . . (2007)

### BibTeX

@MISC{Luo07mindchange,

author = {Wei Luo},

title = {Mind Change Optimal Learning: . . . },

year = {2007}

}

### OpenURL

### Abstract

Learning theories play a significant role to machine learning as computability and complexity theories to software engineering. Gold’s language learning paradigm is one cornerstone of modern learning theories. The aim of this thesis is to establish an inductive principle in Gold’s language learning paradigm to guide the design of machine learning algorithms. We follow the common practice of using the number of mind changes to measure complexity of Gold’s language learning problems, and study efficient learning with respect to mind changes. Our starting point is the idea that a learner that is efficient with respect to mind changes minimizes mind changes not only globally in the entire learning problem, but also locally in subproblems after receiving some evidence. Formalizing this idea leads to the notion of mind change optimality. We characterize mind change complexity of language collections with Cantor’s classic concept of accumulation order. We show that the characteristic property of mind change optimal learners is that they output conjectures (languages) with maximal accumulation order. Therefore, we obtain an inductive principle in Gold’s language learning paradigm based on the simple topological concept accumulation order. The new