## How Risky is the Random-Oracle Model?

Citations: | 11 - 0 self |

### BibTeX

@MISC{Leurent_howrisky,

author = {Gaëtan Leurent and Phong Q. Nguyen},

title = {How Risky is the Random-Oracle Model?},

year = {}

}

### OpenURL

### Abstract

Abstract. RSA-FDH and many other schemes secure in the Random-Oracle Model (ROM) require a hash function with output size larger than standard sizes. We show that the random-oracle instantiations proposed in the literature for such cases are weaker than a random oracle, including the proposals by Bellare and Rogaway from 1993 and 1996, and the ones implicit in IEEE P1363 and PKCS standards: for instance, we obtain a practical preimage attack on BR93 for 1024-bit digests (with complexity less than 2 30). Next, we study the security impact of hash function defects for ROM signatures. As an extreme case, we note that any hash collision would suffice to disclose the master key in the ID-based cryptosystem by Boneh et al. from FOCS ’07, and the secret key in the Rabin-Williams signature for which Bernstein proved tight security at EUROCRYPT ’08. We also remark that collisions can be found as a precomputation for any instantiation of the ROM, and this violates the security definition of the scheme in the standard model. Hence, this gives an example of a natural scheme that is proven secure in the ROM but that in insecure for any instantiation by a single function. Interestingly, for both of these schemes, a slight modification can prevent these attacks, while preserving the ROM security result. We give evidence that in the case of RSA and Rabin/Rabin-Williams, an appropriate PSS padding is more robust than all other paddings known. 1