## Reflections on a categorical foundations of mathematics

### BibTeX

@MISC{Lambek_reflectionson,

author = {J. Lambek and P. J. Scott},

title = { Reflections on a categorical foundations of mathematics},

year = {}

}

### OpenURL

### Abstract

We examine Gödel’s completeness and incompleteness theorems for higher order arithmetic from a categorical point of view. The former says that a proposition is provable if and only if it is true in all models, which we take to be local toposes, i.e. Lawvere’s elementary toposes in which the terminal object is a nontrivial indecomposable projective. The incompleteness theorem showed that, in the classical case, it is not enough to look only at those local toposes in which all the numerals are standard. Thus, for a classical mathematician, Hilbert’s formalist program is not compatible with the belief in a Platonic standard model. However, for pure intuitionistic type theory, a single model suffices, the linguistically constructed free topos, which is the initial object in the category of all elementary toposes and logical functors. Hence, for a moderate intuitionist, formalism and Platonism can be reconciled after all. The completeness theorem can be sharpened to represent any topos by continuous sections of a sheaf of local toposes.