## Sublinear time algorithms (2003)

### Cached

### Download Links

Venue: | SIGACT News |

Citations: | 22 - 2 self |

### BibTeX

@ARTICLE{Rubinfeld03sublineartime,

author = {Ronitt Rubinfeld},

title = {Sublinear time algorithms},

journal = {SIGACT News},

year = {2003},

volume = {34},

pages = {2003}

}

### Years of Citing Articles

### OpenURL

### Abstract

Abstract Sublinear time algorithms represent a new paradigm in computing, where an algorithmmust give some sort of an answer after inspecting only a very small portion of the input. We discuss the sorts of answers that one might be able to achieve in this new setting. 1 Introduction The goal of algorithmic research is to design efficient algorithms, where efficiency is typicallymeasured as a function of the length of the input. For instance, the elementary school algorithm for multiplying two n digit integers takes roughly n2 steps, while more sophisticated algorithmshave been devised which run in less than n log2 n steps. It is still not known whether a linear time algorithm is achievable for integer multiplication. Obviously any algorithm for this task, as for anyother nontrivial task, would need to take at least linear time in n, since this is what it would take to read the entire input and write the output. Thus, showing the existence of a linear time algorithmfor a problem was traditionally considered to be the gold standard of achievement. Nevertheless, due to the recent tremendous increase in computational power that is inundatingus with a multitude of data, we are now encountering a paradigm shift from traditional computational models. The scale of these data sets, coupled with the typical situation in which there is verylittle time to perform our computations, raises the issue of whether there is time to consider any more than a miniscule fraction of the data in our computations? Analogous to the reasoning thatwe used for multiplication, for most natural problems, an algorithm which runs in sublinear time must necessarily use randomization and must give an answer which is in some sense imprecise.Nevertheless, there are many situations in which a fast approximate solution is more useful than a slower exact solution.