## Categories and Types for Axiomatic Domain Theory (2003)

Citations: | 2 - 0 self |

### BibTeX

@MISC{Eppendahl03categoriesand,

author = {Adam Eppendahl},

title = {Categories and Types for Axiomatic Domain Theory},

year = {2003}

}

### OpenURL

### Abstract

Domain Theory provides a denotational semantics for programming languages and calculi containing fixed point combinators and other so-called paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dualsequent calculus to include recursive linear types and define a class of models by adding Freyd’s notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus. We observe that algebraic compactness is better behaved in the context of categories with structural actions than in the usual context of enriched categories. We establish a theory of structural algebraic compactness that allows us to describe our models without reference to enrichment. We develop a 2-categorical perspective on structural actions, including a presentation of monoidal categories that leads directly to Kelly’s reduced coherence conditions. We observe that Benton’s adjoint type constructors can be treated individually, semantically as well as syntactically, using free representations of distributors. We type various of fixed point combinators using recursive types and function types, which