• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

Lightweight Detection and Classification for Wireless Sensor Networks in Realistic Environments (2005)

Cached

  • Download as a PDF

Download Links

  • [www.cs.virginia.edu]
  • [www.cse.ust.hk]
  • [www-users.cs.umn.edu]
  • [www.cs.virginia.edu]
  • [www-users.cs.umn.edu]
  • [www-users.cs.umn.edu]
  • [www.cs.uiuc.edu]
  • [www-users.cs.umn.edu]
  • [www-users.cs.umn.edu]
  • [www-users.cs.umn.edu]
  • [www.cse.ust.hk]
  • [cheetah.cs.virginia.edu]
  • [www.cs.ust.hk]
  • [www-users.cs.umn.edu]
  • [www-users.cs.umn.edu]
  • [www-users.cs.umn.edu]
  • [www.cs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.eecs.berkeley.edu]
  • [www.cs.berkeley.edu]
  • [www.cs.virginia.edu]
  • [www.cs.virginia.edu]
  • [enl.usc.edu]
  • [enl.usc.edu]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Lin Gu , Dong Jia , Pascal Vicaire , Ting Yan , Liqian Luo , Ajay Tirumala , Qing Cao , Tian He , John A. Stankovic , Tarek Abdelzaher , Bruce H. Krogh
Venue:in SenSys
Citations:99 - 12 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Gu05lightweightdetection,
    author = {Lin Gu and Dong Jia and Pascal Vicaire and Ting Yan and Liqian Luo and Ajay Tirumala and Qing Cao and Tian He and John A. Stankovic and Tarek Abdelzaher and Bruce H. Krogh},
    title = {Lightweight Detection and Classification for Wireless Sensor Networks in Realistic Environments},
    booktitle = {in SenSys},
    year = {2005},
    pages = {205--217}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

A wide variety of sensors have been incorporated into a spectrum of wireless sensor network (WSN) platforms, providing flexible sensing capability over a large number of low-power and inexpensive nodes. Traditional signal processing algorithms, however, often prove too complex for energy-and-cost-effective WSN nodes. This study explores how to design efficient sensing and classification algorithms that achieve reliable sensing performance on energy-andcost-effective hardware without special powerful nodes in a continuously changing physical environment. We present the detection and classification system in a cutting-edge surveillance sensor network, which classifies vehicles, persons, and persons carrying ferrous objects, and tracks these targets with a maximum error in velocity of 15%. Considering the demanding requirements and strict resource constraints, we design a hierarchical classification architecture that naturally distributes sensing and computation tasks at

Keyphrases

wireless sensor network    realistic environment    lightweight detection    flexible sensing capability    large number    maximum error    strict resource constraint    classification system    cutting-edge surveillance sensor network    special powerful node    energy-andcost-effective hardware    physical environment    efficient sensing    inexpensive node    energy-and-cost-effective wsn node    classification algorithm    demanding requirement    ferrous object    hierarchical classification architecture    wide variety    computation task    traditional signal processing algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University