• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

A comparison of document clustering techniques (2000)

Cached

  • Download as a PDF

Download Links

  • [www.cs.cmu.edu]
  • [www.cs.fit.edu]
  • [cs.fit.edu]
  • [cs.fit.edu]
  • [rakaposhi.eas.asu.edu]
  • [faculty.cs.byu.edu]
  • [www.cs.umn.edu]
  • [www.cs.fit.edu]
  • [cs.fit.edu]
  • [cs.fit.edu]
  • [www-users.itlabs.umn.edu]
  • [www.cin.ufpe.br]
  • [www.intelligence.tuc.gr]
  • [glaros.dtc.umn.edu]
  • [glaros.dtc.umn.edu]
  • [goanna.cs.rmit.edu.au]
  • [www.intelligence.tuc.gr]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Michael Steinbach , George Karypis , Vipin Kumar
Venue:In KDD Workshop on Text Mining
Citations:612 - 27 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Steinbach00acomparison,
    author = {Michael Steinbach and George Karypis and Vipin Kumar},
    title = {A comparison of document clustering techniques},
    booktitle = {In KDD Workshop on Text Mining},
    year = {2000}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and K-means. (We used both a “standard” K-means algorithm and a “bisecting ” K-means algorithm.) Our results indicate that the bisecting K-means technique is better than the standard K-means approach and (somewhat surprisingly) as good or better than the hierarchical approaches that we tested.

Keyphrases

common document    experimental study    bisecting k-means algorithm    agglomerative hierarchical clustering    hierarchical approach    standard k-means algorithm    k-means technique    standard k-means approach   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University