## Indexing moving points (2003)

### Cached

### Download Links

- [www.daimi.au.dk]
- [www.uiuc.edu]
- [www.cs.duke.edu]
- [http.cs.berkeley.edu]
- [compgeom.cs.uiuc.edu]
- [compgeom.cs.uiuc.edu]
- DBLP

### Other Repositories/Bibliography

Citations: | 169 - 13 self |

### BibTeX

@MISC{Agarwal03indexingmoving,

author = {Pankaj K. Agarwal and Lars Arge and Jeff Erickson},

title = {Indexing moving points},

year = {2003}

}

### Years of Citing Articles

### OpenURL

### Abstract

We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear trajectory, so that any query of the following form can be answered quickly: Given a rectangle R and a real value t; report all K points of S that lie inside R at time t: We first present an indexing structure that, for any given constant e> 0; uses OðN=BÞ disk blocks and answers a query in OððN=BÞ 1=2þe þ K=BÞ I/Os, where B is the block size. It can also report all the points of S that lie inside R during a given time interval. A point can be inserted or deleted, or the trajectory of a point can be changed, in Oðlog 2 B NÞ I/Os. Next, we present a general approach that improves the query time if the queries arrive in chronological order, by allowing the index to evolve over time. We obtain a tradeoff between the query time and the number of times the index needs to be updated as the points move. We also describe an indexing scheme in which the number of I/Os required to answer a query depends monotonically on the difference between the query time stamp t and the current time. Finally, we develop an efficient indexing scheme to answer approximate