• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Text Categorization with Support Vector Machines: Learning with Many Relevant Features (1998)

Cached

  • Download as a PDF

Download Links

  • [ranger.uta.edu]
  • [www.cs.iastate.edu]
  • [www.cs.cornell.edu]
  • [www-ai.informatik.uni-dortmund.de]
  • [www.cs.cornell.edu]
  • [www-ai.informatik.uni-dortmund.de]
  • [faculty.cs.byu.edu]
  • [www.joachims.org]
  • [l2r.cs.uiuc.edu]
  • [www.cs.cornell.edu]
  • [www.cs.cornell.edu]
  • [www-ai.cs.uni-dortmund.de]
  • [www-ai.informatik.uni-dortmund.de]
  • [www-ai.cs.uni-dortmund.de]
  • [www-ai.cs.uni-dortmund.de]
  • [www.cs.cornell.edu]
  • [www.cs.cornell.edu]
  • [www-ai.informatik.uni-dortmund.de]
  • [www-ai.cs.uni-dortmund.de]

  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Thorsten Joachims
Citations:2302 - 9 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Joachims98textcategorization,
    author = {Thorsten Joachims},
    title = {Text Categorization with Support Vector Machines: Learning with Many Relevant Features},
    year = {1998}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

This paper explores the use of Support Vector Machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manual parameter tuning.

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University