## Learning Probabilistic Networks (1998)

Venue: | THE KNOWLEDGE ENGINEERING REVIEW |

Citations: | 36 - 1 self |

### BibTeX

@ARTICLE{Krause98learningprobabilistic,

author = {Paul J Krause},

title = {Learning Probabilistic Networks},

journal = {THE KNOWLEDGE ENGINEERING REVIEW},

year = {1998},

volume = {13},

pages = {321--351}

}

### Years of Citing Articles

### OpenURL

### Abstract

A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.