@MISC{Kim12innovativealgorithms, author = {Wooyoung Kim}, title = {INNOVATIVE ALGORITHMS AND EVALUATION METHODS FOR BIOLOGICAL MOTIF FINDING}, year = {2012} }
Share
OpenURL
Abstract
Biological motifs are defined as overly recurring sub-patterns in biological systems. Sequence motifs and network motifs are the examples of biological motifs. Due to the wide range of applications, many algorithms and computational tools have been developed for efficient search for biological motifs. Therefore, there are more computationally derived motifs than experimentally validated motifs, and how to validate the biological significance of the ‘candidate motifs ’ becomes an important question. Some of sequence motifs are verified by their structural similarities or their functional roles in DNA or protein sequences, and stored in databases. However, biological role of network motifs is still invalidated and currently no databases exist for this purpose. In this thesis, we focus not only on the computational efficiency but also on the biological meanings of the motifs. We provide an efficient way to incorporate biological information with clustering analysis methods: For example, a sparse nonnegative matrix factorization (SNMF) method is used with Chou-Fasman parameters for the protein motif finding. Biological network motifs are searched by various clustering algorithms with Gene ontology (GO) information. Experimental results show that the algorithms perform better than existing algorithms by producing a larger