• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations | Disambiguate

DMCA

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection (1997)

Cached

  • Download as a PDF

Download Links

  • [www-cvr.ai.uiuc.edu]
  • [vision.ucsd.edu]
  • [vision.ucsd.edu]
  • [www0.cs.ucl.ac.uk]
  • [www1.cs.columbia.edu]
  • [www.cs.columbia.edu]
  • [www.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www1.cs.columbia.edu]
  • [www.mmp.rwth-aachen.de]
  • [www.cs.columbia.edu]
  • [www.vision.rwth-aachen.de]
  • [www.informatik.uni-konstanz.de]
  • [ftp.idiap.ch]
  • [maths.dur.ac.uk]
  • [www.idiap.ch]
  • [web5.cs.columbia.edu]
  • [cseweb.ucsd.edu]
  • [www-cvr.ai.uiuc.edu]
  • [www.cfar.umd.edu]
  • [www.csee.wvu.edu]
  • [www.cs.fsu.edu]
  • [www.cse.buffalo.edu]
  • [www.cmlab.csie.ntu.edu.tw]
  • [www.vision.caltech.edu]
  • [www.ece.lsu.edu]
  • [www.cse.buffalo.edu]
  • [www.cs.fsu.edu]
  • [www.stat.ucla.edu]
  • [www.decom.ufop.br]
  • [web.eecs.umich.edu]
  • [ivizlab.sfu.ca]
  • [www.cvl.iis.u-tokyo.ac.jp]
  • [www.cs.princeton.edu]
  • [www.cs.zju.edu.cn]
  • [vision.ucsd.edu]
  • [vision.cornell.edu]
  • [www.researchgate.net]
  • [www.researchgate.net]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Peter N. Belhumeur , João P. Hespanha , David J. Kriegman
Citations:2309 - 17 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@MISC{Belhumeur97eigenfacesvs.,
    author = {Peter N. Belhumeur and João P. Hespanha and David J. Kriegman},
    title = {Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection},
    year = {1997}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face, under varying illumination but fixed pose, lie in a 3-D linear subspace of the high dimensional image space -- if the face is a Lambertian surface without shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we linearly project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fisher's Linear Discriminant and produces well separated classes in a low-dimensional subspace even under severe variation in lighting and facial expressions. The Eigenface

Keyphrases

eigenfaces v    class specific linear projection    lambertian surface    facial expression    low-dimensional subspace    3-d linear subspace    projection method    high-dimensional space    pattern classification approach    separated class    large deviation    particular face    linear discriminant    gross variation    linear subspace    severe variation    high dimensional image space    face recognition algorithm   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University