• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations
Advanced Search Include Citations

DMCA

3D Human Pose from Silhouettes by Relevance Vector Regression (2004)

Cached

  • Download as a PDF

Download Links

  • [www.csie.ntu.edu.tw]
  • [www.csie.ntu.edu.tw]
  • [hal.archives-ouvertes.fr]
  • [hal.inria.fr]
  • [hal.inria.fr]
  • [lear.inrialpes.fr]
  • [lear.inrialpes.fr]
  • [www.cs.cmu.edu]
  • [www-ljk.imag.fr]
  • [www.cs.cmu.edu]
  • [eprints.pascal-network.org]
  • [www-ljk.imag.fr]

  • Other Repositories/Bibliography

  • DBLP
  • Save to List
  • Add to Collection
  • Correct Errors
  • Monitor Changes
by Ankur Agarwal , Bill Triggs
Venue:In CVPR
Citations:199 - 8 self
  • Summary
  • Citations
  • Active Bibliography
  • Co-citation
  • Clustered Documents
  • Version History

BibTeX

@INPROCEEDINGS{Agarwal043dhuman,
    author = {Ankur Agarwal and Bill Triggs},
    title = {3D Human Pose from Silhouettes by Relevance Vector Regression},
    booktitle = {In CVPR},
    year = {2004},
    pages = {882--888}
}

Share

Facebook Twitter Reddit Bibsonomy

OpenURL

 

Abstract

We describe a learning based method for recovering 3D human body pose from single images and monocular image sequences. Our approach requires neither an explicit body model nor prior labelling of body parts in the image. Instead, it recovers pose by direct nonlinear regression against shape descriptor vectors extracted automatically from image silhouettes. For robustness against local silhouette segmentation errors, silhouette shape is encoded by histogramof-shape-contexts descriptors. For the main regression, we evaluate both regularized least squares and Relevance Vector Machine (RVM) regressors over both linear and kernel bases. The RVM’s provide much sparser regressors without compromising performance, and kernel bases give a small but worthwhile improvement in performance. For realism and good generalization with respect to viewpoints, we train the regressors on images resynthesized from real human motion capture data, and test it both quantitatively on similar independent test data, and qualitatively on a real image sequence. Mean angular errors of 6–7 degrees are obtained — a factor of 3 better than the current state of the art for the much simpler upper body problem. 1.

Keyphrases

human pose    relevance vector regression    kernel base    local silhouette segmentation error    main regression    silhouette shape    explicit body model    worthwhile improvement    single image    least square    shape descriptor vector    body problem    similar independent test data    human body    real human motion capture data    real image sequence    prior labelling    histogramof-shape-contexts descriptor    mean angular error    direct nonlinear regression    relevance vector machine    monocular image sequence    image silhouette    much simpler    current state    body part    good generalization   

Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University